• 제목/요약/키워드: aromatic hydrocarbon

검색결과 277건 처리시간 0.029초

윤활기유의 조성이 전기절연유의 성능 및 특성에 미치는 영향 (The Effect of Base Oil Composition on Electronic Insulating Oil's Performances)

  • 문우식;전정식
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1998년도 제28회 추계학술대회
    • /
    • pp.181-189
    • /
    • 1998
  • In order to investigate the effect of base oil composition on the electronic insulating oil's performances, an experimental study has been conducted using different oils. Owing to their properties, like lower pour point and gas absorbing, naphthenic base oils are used more often than paraffmic base oils for the electronic insulating oil application. Naphthenic and paraffinic base oils are significantly different in their aromatic hydrocarbon content. In this paper, PXE(para xylyl ethane), LAB(linear alkylbenzene), C13 aromatic hydrocarbon mixture and C17 aromatic hydrocarbon mixture are investigated regarding their influence on insulating oil's performances. According to present study, breakdown voltage decreased with increasing aromatic lydrocarbon content in a deep dewaxed paraffmic base oil. However, any changing in the dissipation factor was not recognizable at small treated level. Furthermore, the volume resistance was not influenced by aromatic hydrocarbon content. The gassing tendency was found as a highly sensible property, changing with treating aromatic hydrocarbons. The higher benzene ring content in the hydrocarbon, the better gassing tendency.

  • PDF

유처리제의 방향족 탄화수소 정량방법에 대한 표준화 (Standardization for Quantitative Analysis of Aromatic Hydrocarbon in Oil Spill Dispersant)

  • 조종희;임윤택;김우석;윤영자;김신종
    • 한국응용과학기술학회지
    • /
    • 제19권4호
    • /
    • pp.302-310
    • /
    • 2002
  • Demand for organic analysis increase as industries are growing and many products are spreaded in the daily life. One of many products is oil spill dispersant. It was used for oil accident in the ocean. When oil spill dispersant spread at the ocean, the petroleum in the ocean is dispersed. The oil spill dispersant is made of non ionic surfactant and petroleum oil. The non ionic surfactant disperse petroleum from oil accident. The other part is petroleum oil which has aromatic hydrocarbon. Because the aromatic hydrocarbon is cancerogenic material, it directly injure animals in the ocean. This cause the second pollution in the human body. Many oil accidents still are controlled by oil spill dispersant. Therefore quality control of the oil spill dispersant become important and this also demand for the exact quantitative analysis of aromatic hydrocarbon. Hereupon the first we develop separate petroleum oil from surfactant. The second standardize analytical method of aromatic hydrocarbon in the separated petroleum oil.

Toxicological Effects of Polycyclic Aromatic Hydrocarbon Quinones Contaminated in Diesel Exhaust Particles

  • Kumagai, Yoshito;Taguchi, Keiko
    • Asian Journal of Atmospheric Environment
    • /
    • 제1권1호
    • /
    • pp.28-35
    • /
    • 2007
  • Accumulated epidemiological and animal studies have suggested that prolonged exposure to ambient particulate matter (PM) is associated with an increased risk of cardiovascular disease and pulmonary dysfunction. While diesel exhaust particles (DEP) contain large variety of compounds, polycyclic aromatic hydrocarbons (PAHs) are a dominant component contaminated in DEP. This article reviews effects of two PAH quinones, 9,10-phenanthraquinone (9,10-PQ) and l,2-naphthoquinone (l,2-NQ), on vascular and respiratory systems.

Effect of Polycyclic Aromatic Hydrocarbon (PAH) on Shell Repair in the Pacific oyster, Crassostrea gigas

  • Cho, Sang-Man;Lee, You-Me;Jeong, Woo-Geon
    • 한국패류학회지
    • /
    • 제27권1호
    • /
    • pp.35-42
    • /
    • 2011
  • In order to understand effect of polycyclic aromatic hydrocarbon (PAH) on shell repair of the Pacific oyster, Crassostrea gigas, shell regeneration experiments were carried out using oysters drilled a hole on the right valve. The change of pH and hemocytic characteristics in both extrapallial fluid and hemolymph were observed during the shell repair. The thickness of mantle tissue was apparently decreased, while necrosis in epithelium and periostracal gland was increased in response to PAH exposure. Our finding suggested that PAH could adversely influence on shell repair.

Aromatic hydrocarbon분해세균의 검출과 그 plasmid유전자의 특성 (Isolation of aromatic hydrocarbon-degrading bacteria and genetic characterization of their plasmid genes)

  • 김치경;김종우;김영창;민태익
    • 미생물학회지
    • /
    • 제24권1호
    • /
    • pp.67-72
    • /
    • 1986
  • Aromatic hydrocarbon degrading bacteria were isolated from industrial waste by using an agar plate method. The isolate DY-1 was identified as Acinetobacter sp. and found to utilize phenanthrene as tis sole carbon source. THe bacteria were proved to produce salicylic acid as an intermediate from phenanthrene through naphthalene pathway, when the products in the culture were wxamined by thin-layer chromatography. THe $Phn^+$ genes were found to be involved in two plasmids of about 4 and 40kb which were lost and not detected in the DNA samples prepared from the mitomycin C-cured cells by a gel electrophoretic analysis.

  • PDF

북극 스발바드 군도 스피츠베르겐섬 콩스피요르드에서의 다환 방향족 탄화수소화합물의 분포 특성 (Distribution of Polycyclic Aromatic Hydrocarbon at Kongsfjorden in Spitsbergen, Svalbard Islands)

  • 김기범;하성용;안인영
    • 한국환경과학회지
    • /
    • 제13권9호
    • /
    • pp.819-826
    • /
    • 2004
  • In order to elucidate the polycyclic aromatic hydrocarbon concentration and its origin in arctic area, four arctic brown algae (Laminaria saccharina, L. digita, Alaria esculenta, Desmarestia aculeata), one marine invertebrate (Echinoidea) and sediments were collected from Kongsfjorden in Spitsbergen from the late July to early August, 2003. In case of macroalgae, the young blade part above growth point and the old stipes and blades beneath growth point were separated and analyzed for polycyclic aromatic hydrocarbons (PAHs) in an attempt to check the mechanism of uptake in macroalgae to accumulate PAH. There was no difference in PAH concentrations between sampling sites (Stations B and C), species, and blades beneath and above growth point. PAH concentrations in all samples collected in this study were relatively higher than those reported in other areas of arctic. Especially, station C, which is known as an unpolluted area, showed 10 times higher PAH concentration (8,765 ng/g) in sediment than station A (694 ng/g) around harbor. In addition high PAH concentration, station C had very higher proportion of methylated PAH to parent PAH in sediment than station A. Source analysis using PAH isomer pair ratios as indicators showed that Kongsfjorden area seemed to be relatively contaminated with PAH derived from direct petroleum input.

Toxicoproteomics in the Study of Aromatic Hydrocarbon Toxicity

  • Cho, Chang-Won;Kim, Chan-Wha
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제11권3호
    • /
    • pp.187-198
    • /
    • 2006
  • The aromatic hydrocarbons (AHs), which include benzene, polycyclic aromatic hydrocarbons, and dioxin, are important chemical and environmental contaminants in industry that usually cause various diseases. Over the years, numerous studies have described and evaluated the adverse health effects induced by AHs. Currently, "Omics" technologies, transcriptomics and proteomics, have been applied in AH toxicity studies. Proteomics has been used to identify molecular mechanisms and biomarkers associated with global chemical toxicity. It could enhance our ability to characterize chemical-induced toxicities and to identify noninvasive biomarkers. The proteomic approach (e.g. 2-dimensional electrophoresis [2-DE]), can be used to observe changes in protein expression during chemical exposure with high sensitivity and specificity. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) and electrospray ionization-quadrupole (ESI-Q)-TOF MS/MS are recognized as the most important protein identification tools. This review describes proteomic technologies and their application in the proteomic analysis of AH toxicity.

Atmospheric Behaviors of Polycyclic Aromatic Hydrocarbons and Nitropolycyclic Aromatic Hydrocarbons in East Asia

  • Hayakawa, Kazuichi;Tang, Ning;Kameda, Takayuki;Toriba, Akira
    • Asian Journal of Atmospheric Environment
    • /
    • 제1권1호
    • /
    • pp.19-27
    • /
    • 2007
  • Hazardous polycyclic aromatic hydrocarbons (PAHs) and nitropolycyclic aromatic hydrocarbons (NPAHs) are mainly originated from imperfect combustion of fossil fuels such as petroleum and coal. The consumptions of not only petroleum but also coal have been increasing in the East Asian countries. This review describes the result of international collaboration research concerning characteristics and major contributors of atmospheric PAHs and NPAHs in cities in Japan, Korea, China and Russia. We collected airborne particulates in ten cities in the above countries and six PAHs and eleven NPAHs were determined by HPLC methods using fluorescence and chemiluminescence detections. The total PAH concentrations were much higher in Chinese cities (Fushun, Tieling, Shenyang and Beijing) than those in other cities (Vladivostok, Busan, Kanazawa, Kitakyushu, Sapporo and Tokyo). The total NPAH concentrations were also higher in Chinese cities than those in the other cities. The [NPAH]/[corresponding PAH] ratios are much larger in diesel-engine exhaust particulates than those in coal-burning particulates. The [1-nitropyrene]/[pyrene] ratio of airborne particulates was much smaller in the four Chinese cities, suggesting that coal combustion systems such as coal heaters were the main contributors. On the other hand, the ratios were larger in Korean and Japanese cities, suggesting the large contribution of diesel-engine vehicles.

염화 방향족 탄화수소 분해세균의 분리 및 특성 (Isolation and characterization of bacteria degrading chlorinated aromatic hydrocarbons)

  • 김종우;김치경;김영창;염재홍;이재구
    • 미생물학회지
    • /
    • 제25권2호
    • /
    • pp.122-128
    • /
    • 1987
  • 분해환경을 형성케하는 평판 고체배지 방법으로 4-CB 분해세균인 DJ-12, DJ-26, FP-6 균주와 2,4,5-T 분해세균인 TP-1균주를 공장폐수로부터 분리하여 각 균주의 분해능고 생화학적 특성을 연구하였다. 분리균주 중 DJ-12, DJ-26 그리고 TP-1은 Pseudomonas 속으로 동정되었다. Chlroinated aromatic hydrocarbon의 분해는 UV-scanning spectrum을 측정함으로써 조사하였는데 4-CB오 2,4,5-T의 peak는 각각 253nm와 292nm에서 나타났다. 각각의 기험 hydrocarbon을 첨가한 배양약에서 각 분해균주를 배양시킴에 따라 253nm와 292nm의 peak가 감소하는 것으로 이들 균주에 의한 시험 hydrocarbon의 분해능이 매우 높다는 것을 확인하였다. 각 시험균주로부터 plasmid DNA를 조사한 결과 모두 plasmid를 함유하고 있어 hydrocarbon 분해유전자가 plasmid에 존재할 수 있음을 알 수 있으며 이들 분해유전자의 유전적 특징을 규명하기 위한 curing test 나 transformation 과정에 필요한 marker를 찾아내기 위하여 몇가지 항생물질에 대한 저항성을 조사하였다.

  • PDF

Atmospheric Polycyclic and Nitropolycyclic Aromatic Hydrocarbons in an Iron-manufacturing City

  • Hayakawa, Kazuichi;Tang, Ning;Morisaki, Hiroshi;Toriba, Akira;Akutagawa, Tomoko;Sakai, Shigekatsu
    • Asian Journal of Atmospheric Environment
    • /
    • 제10권2호
    • /
    • pp.90-98
    • /
    • 2016
  • Total suspended particulates (TSP) in the atmosphere were collected for 2 weeks during winter in Muroran, Hokkaido, Japan, a typical iron-manufacturing city. The concentrations of polycyclic aromatic hydrocarbons (PAHs) and nitropolycyclic aromatic hydrocarbons (NPAHs) in TSP were determined by high-performance liquid chromatography (HPLC) using fluorescence and chemiluminescence detectors, respectively. No relationship was observed between the atmospheric PAH and NPAH concentration, or the atmospheric PAH and TSP concentration. However, there was a tendency that the atmospheric PAH concentration was higher when the wind blew from the coke-oven plant. Furthermore, the concentration ratios of 1-nitropyrene to pyrene, which is a suitable indicator of the contribution made by automobiles and coal combustion systems to urban air particulates, were smaller in Muroran and the values were close to those observed in particulates from coal combustion systems. Therefore, these results show that the PAH and NPAH compositions for Muroran are characteristic of an iron-manufacturing city.