• 제목/요약/키워드: aromatic amino acids

검색결과 102건 처리시간 0.025초

放射性 沃化反應 (第 1 報) 低溫沃化反應 (Radio Iodination of Organic Compounds (1) A Low Temperature Procedures)

  • 김유선;김종두
    • 대한화학회지
    • /
    • 제11권2호
    • /
    • pp.51-55
    • /
    • 1967
  • 放射性 沃化反應 中 分解하기 쉬운 化合物의 沃化反應으로 有用한 低溫沃化反應에 關하여 硏究하였다. Chloroamine-T를 利用한 沃化反應은 低溫에서 높은 收率로 放射性 沃化反應을 進行시킬 수 있었으며, 活性化된 芳香核이 있는 또는 이에 類似한 아미노酸, 蛋白質化合物, 各 種 Phenol類의 沃化가 不可能하였으나 二重結合化合物 및 一般化合物엔 큰 效果가 없었다. 反應收率은 $100{\sim}60%$이었으며, 各 化合物의 試藥에 對한 反應度는 親電子反應에 對한 芳香核의 反應度와 比例하는 것이었다. 反應操作을 記述하였으며 反應過程을 考察하였다.

  • PDF

Escherichia coli에 의한 방향족 아미노산 생산에 관한 연구 (A Study on the Production of Aromatic Amino Acids by Escherichia coli.)

  • Park, Young-Jin
    • 한국미생물·생명공학회지
    • /
    • 제13권2호
    • /
    • pp.119-127
    • /
    • 1985
  • 여러 가지 Escherchia coli 변이주의, glucose 와 ammonium염과 같은 간단한 기질로부터 방향족 아미노산 특히 phenylanine을 생합성하는 능력을 비교 검토한 결과 방향족 아미노산 생합성과정중 common pathway의 첫 번째 반응이 phenylanine 생합성에 가장 큰 영향을 준다는 것을 확인하였다. 따라서 관계효소인 DAHP synthase의 효소활성과 생합성에 관련된 각종 대사 제어작용을 효과적으로 제거시킴으로서 phenylalanine 생산량을 크게 높일 수 있었으며 더욱이 phenylalanine terminal pathway의 첫 단계 반응을 촉매하는 prephenate de-hydratase의 효소활성과 효소생합성에 관련된 제어 작용도 동시에 제거하면 phenylalanine생산이 상승적으로 증가됨을 보였다. 한편 방향족아미노산의 transport system에 관계하는 arop유전자의 변이는 phenylalanine생산을 크게 저하시키는 효과를 나타내었다.

  • PDF

Lactococcus sp. HY449가 생산한 Bacterisocin의 정제 (Purification and Partial Amino Acid Sequence of a Bacteriocin Produced by Lactococcus, sp. HY449)

  • 오세종;이상준;김경태;김상교;박연희;백영진
    • 한국미생물·생명공학회지
    • /
    • 제29권3호
    • /
    • pp.155-161
    • /
    • 2001
  • Lactrococcus sp. HY449균줄르 M17-glucose broth에 배양하여 배양 상등액으로부터 propanol-actone 침전 ion-exchange chromatography gel-filtration chromatography 및 reverse-phase chroamtography 등을 통하여 비활성 25,600,000 BU/mg 인 순수한 bacteriocin 을 정제하였다. 정제 과정 주에서 ion-exchange chromatography 단계에 서는 35.3%의회수율이 7.3%로 감소하였다. Reverse-Phase chromatography에선 3.3%의 회수율을 보였고 활성도는 413.5배로 증가하였다. Tricine-SDS 전기영도 결과 bacteriocin 은 단일 밴드로 나타났으며, N-말단 아미노산 서열 분석을 수행한 결과 $NH_2$-IIe-Leu-Pro-GIn로 확인되었다. 아미노산조정 분석결과를 바탕으로 분자량을 예측한 결과 본 bacteriocin은 32개의 아미노산으로 이루어져 있으며 분자량은 3.6kDa인 것으로 추정되었다.

  • PDF

Enhanced Stability of Tyrosine Phenol-Lyase from Symbiobacterium toebii by DNA Shuffling

  • Kim, Jin-Ho;Song, Jae-Jun;Kim, Bong-Gyun;Sung, Moon-Hee;Lee, Sang-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권1호
    • /
    • pp.153-157
    • /
    • 2004
  • Tyrosine phenol-lyase (TPL) is a useful enzyme for the synthesis of pharmaceutical aromatic amino acids. In the current study, sequential DNA shuffling and screening were used to enhance the stability of TPL. Twenty-thousand mutants were screened, and several improved variants were isolated. One variant named A13V, in which the $13^{th}$ amino acid alanine was substituted by valine, exhibited a higher temperature and denaturant stability than the wild-type TPL. The purified mutant TPL, A13V, retained about 60% of its activity at $76^\circ{C}$, whereas the activity of the wild-type TPL decreased to less than 20% at the same temperature. Plus, A13V exhibited about 50% activity with 3 M urea, while the wild-type TPL lost almost all its catalytic activity, indicating an increased denaturant tolerance in the mutant A13V. It is speculated that the substitution of Val for the Ala in the $\beta$-strand of the N-terminal arm was responsible for the heightened stabilization, and that the current results will contribute to further research on the structural stability of TPL.

황원자를 함유한 아미노산 검출용 전하이동형 색소에 관한 연구 (Charge Transfer Dye Probe for Thiol-containing Amino Acid)

  • 신인섭;권선영;마츠모토 신야;김성훈
    • 한국염색가공학회지
    • /
    • 제27권4호
    • /
    • pp.261-269
    • /
    • 2015
  • Two new D-${\pi}$-A dyes were synthesized by the condensation reaction between active methyl and aromatic aldehyde and its biothiol sensing properties in DMSO/water were investigated by UV-vis spectroscopy. Upon addition of $Hg^{2+}$, the solution of D-${\pi}$-A dyes showed color change and the absorption band shows a formation of a dye-$Hg^{2+}$ coordination complex. These dyes exhibited high selectivity for $Hg^{2+}$ as compared with other cations. The dye-$Hg^{2+}$ could be recovered by adding glutathion(GSH). The absorption intensity of dye-$Hg^{2+}$ increased only by the addition of glutathione(GSH). The competition experiments revealed that no obvious interference was observed by performing the titration with the mixture of glutathione(GSH) and other amino acids. The results indicated that these D-${\pi}$-A dyes were highly selective for glutathione(GSH) detection.

Development of Saccharomyces cerevisiae Reductase YOL151W Mutants Suitable for Chiral Alcohol Synthesis Using an NADH Cofactor Regeneration System

  • Yoon, Shin Ah;Jung, Jihye;Park, Seongsoon;Kim, Hyung Kwoun
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권2호
    • /
    • pp.218-224
    • /
    • 2013
  • The aldo-keto reductases catalyze reduction reactions using various aliphatic and aromatic aldehydes/ketones. Most reductases require NADPH exclusively as their cofactors. However, NADPH is much more expensive and unstable than NADH. In this study, we attempted to change the five amino acid residues that interact with the 2'-phosphate group of the adenosine ribose of NADPH. These residues were selected based on a docking model of the YOL151W reductase and were substituted with other amino acids to develop NADH-utilizing enzymes. Ten mutants were constructed by site-directed mutagenesis and expressed in Escherichia coli. Among them, four mutants showed higher reductase activities than wild-type when using the NADH cofactor. Analysis of the kinetic parameters for the wild type and mutants indicated that the $k_{cat}/K_{m}$ value of the Asn9Glu mutant toward NADH increased 3-fold. A docking model was used to show that the carboxyl group of Glu 9 of the mutant formed an additional hydrogen bond with the 2'-hydroxyl group of adenosine ribose. The Asn9Glu mutant was able to produce (R)-ethyl-4-chloro-3-hydroxyl butanoate rapidly when using the NADH regeneration system.

Development of a Chemically Defined Minimal Medium for the Exponential Growth of Leuconostoc mesenteroides ATCC8293

  • Kim, Yu Jin;Eom, Hyun-Ju;Seo, Eun-Young;Lee, Dong Yup;Kim, Jeong Hwan;Han, Nam Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권11호
    • /
    • pp.1518-1522
    • /
    • 2012
  • Leuconostoc mesenteroides is a heterofermentative Grampositive bacterium that plays key roles in fermentation of foods such as kimchi, sauerkraut, and milk, leading to the production of various organic acids and aromatic compounds. To study the microbiological and genomic characteristics of L. mesenteroides, we have developed a new chemically defined minimal medium by using the single omission technique. During the exponential cell growth, this species required glutamine, methionine, valine, and nicotinic acid as essential nutrients and 8 amino acids (arginine, cysteine, histidine, leucine, phenylalanine, proline, threonine, and tryptophan), 5 vitamins (ascorbic acid, folic acid, inosine, calcium panthothenate, and thiamine), and others (manganese, magnesium, adenine, uracil, and Tween 80) as supplemental nutrients. This medium is useful to study the metabolic characteristics of L. mesenteroides and to explain its role in food fermentation.

Engineering and Characterization of the Isolated C-Terminal Domain of 5-Enolpyruvylshikimate-3-phosphate (EPSP) Synthase

  • Kim, Hak-Jun;Kim, Hyun-Woo;Kang, Sung-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권8호
    • /
    • pp.1385-1389
    • /
    • 2007
  • 5-Enolpyruvylshikimate-3-phosphate (EPSP) synthase catalyzes the formation of EPSP and inorganic phosphate from shikimate-3-phosphate (S3P) and phosphoenolpyruvate (PEP) in the biosynthesis of aromatic amino acids. To delineate the domain-specific function, we successfully isolated the discontinuous C-terminal domain (residues 1-21, linkers, 240-427) of EPSP synthase (427 residues) by site-directed mutagenesis. The engineered C-terminal domains containing no linker (CTD), or with gly-gly ($CTD^{GG}$) and gly-ser-ser-gly ($CTD^{GSSG}$) linkers were purified and characterized as having distinct native-like secondary and tertiary structures. However, isothermal titration calorimetry (ITC), $^{15}N-HSQC$,\;and\;^{31}P-NMR$ revealed that neither its substrate nor inhibitor binds the isolated domain. The isolated domain maintained structural integrity, but did not function as the half of the full-length protein.

Flavor and Taste-Active Compounds in Blue Mussel Hydrolysate Produced by Protease

  • Cha, Yong-Jun;Kim, Hun;Jang, Sung-Min
    • Preventive Nutrition and Food Science
    • /
    • 제3권1호
    • /
    • pp.15-21
    • /
    • 1998
  • Volatile flavor compounds in hydrolyzed blue mussel(HBM) produced by OptimaseTM APL-440, with untreated blue mussel(UBM) were compared. A total of 100 volatile compounds were detected in both HBM and YBM , consisting mainly of 25 aldehydes, 16 ketones, 17 alcohols, 8 nitrogen-containing compounds, 11 aromatic compounds, 8 terpenes, and 15 miscellaneous compounds. Levels of aromiatic compounds decreased after hydrolysis, whereas levels of 7 nitrogen-containing compounds increased. The compounds , 3-methylbutanal, (z)-4-heptenal, and (E,Z)-2-, 6-nonadienal , had the highest odor values in both samples. Total free amino acids in HBM were 21.89%(w/w) and increased by 3,4 times higher than UBM. glutamic acid and aspartic acid, having sour tastes, were the major taste-active compounds in HBM.

  • PDF

Metabolomic approach to key metabolites characterizing postmortem aged loin muscle of Japanese Black (Wagyu) cattle

  • Muroya, Susumu;Oe, Mika;Ojima, Koichi;Watanabe, Akira
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권8호
    • /
    • pp.1172-1185
    • /
    • 2019
  • Objective: Meat quality attributes in postmortem muscle tissues depend on skeletal muscle metabolites. The objective of this study was to determine the key metabolic compounds and pathways that are associated with postmortem aging and beef quality in Japanese Black cattle (JB; a Japanese Wagyu breed with highly marbled beef). Methods: Lean portions of Longissimus thoracis (LT: loin) muscle in 3 JB steers were collected at 0, 1, and 14 days after slaughter. The metabolomic profiles of the samples were analyzed by capillary electrophoresis time-of-flight mass spectrometry, followed by statistical and multivariate analyses with bioinformatics resources. Results: Among the total 171 annotated compounds, the contents of gluconic acid, gluconolactone, spermidine, and the nutritionally vital substances (choline, thiamine, and nicotinamide) were elevated through the course of postmortem aging. The contents of glycolytic compounds increased along with the generation of lactic acid as the beef aging progressed. Moreover, the contents of several dipeptides and 16 amino acids, including glutamate and aromatic and branched-chain amino acids, were elevated over time, suggesting postmortem protein degradation in the muscle. Adenosine triphosphate degradation also progressed, resulting in the generation of inosine, xanthine, and hypoxanthine via the temporal increase in inosine 5'-monophosphate. Cysteine-glutathione disulfide, thiamine, and choline increased over time during the postmortem muscle aging. In the Kyoto encyclopedia of genes and genomes database, a bioinformatics resource, the postmortem metabolomic changes in LT muscle were characterized as pathways mainly related to protein digestion, glycolysis, citric acid cycle, pyruvate metabolism, pentose phosphate metabolism, nicotinamide metabolism, glycerophospholipid metabolism, purine metabolism, and glutathione metabolism. Conclusion: The compounds accumulating in aged beef were shown to be nutritionally vital substances and flavor components, as well as potential useful biomarkers of aging. The present metabolomic data during postmortem aging contribute to further understanding of the beef quality of JB and other breeds.