• Title/Summary/Keyword: aromadendrin

Search Result 19, Processing Time 0.023 seconds

Aromadendrin Inhibits Lipopolysaccharide-Induced Nuclear Translocation of NF-κB and Phosphorylation of JNK in RAW 264.7 Macrophage Cells

  • Lee, Jae-Won;Kim, Nam Ho;Kim, Ji-Young;Park, Jun-Ho;Shin, Seung-Yeon;Kwon, Yong-Soo;Lee, Hee Jae;Kim, Sung-Soo;Chun, Wanjoo
    • Biomolecules & Therapeutics
    • /
    • v.21 no.3
    • /
    • pp.216-221
    • /
    • 2013
  • Aromadendrin, a flavonol, has been reported to possess a variety of pharmacological activities such as anti-inflammatory, antioxidant, and anti-diabetic properties. However, the underlying mechanism by which aromadendrin exerts its biological activity has not been extensively demonstrated. The objective of this study is to elucidate the anti-inflammatory mechanism of aromadedrin in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells. Aromadendrin significantly suppressed LPS-induced excessive production of pro-inflammatory mediators such as nitric oxide (NO) and $PGE_2$. In accordance, aromadendrin attenuated LPS-induced overexpression iNOS and COX-2. In addition, aromadendrin significantly suppressed LPS-induced degradation of $I{\kappa}B$, which sequesters NF-${\kappa}B$ in cytoplasm, consequently inhibiting the nuclear translocation of pro-inflammatory transcription factor NF-${\kappa}B$. To elucidate the underlying signaling mechanism of anti-inflammatory activity of aromadendrin, MAPK signaling pathway was examined. Aromadendrin significantly attenuated LPS-induced activation of JNK, but not ERK and p38, in a concentration-dependent manner. Taken together, the present study clearly demonstrates that aromadendrin exhibits anti-inflammatory activity through the suppression of nuclear translocation of NF-${\kappa}B$ and phosphorylation of JNK in LPS-stimulated RAW 264.7 macrophage cells.

Studies on Biological Activity of Wood Extractives(V) - Identification of Flavonoids from the Heartwood of Larix leptolepis and Their Antioxidative Activities - (수목추출물의 생리활성에 관한 연구(V) - 일본잎갈나무 심재부의 플라보노이드 성분 분리 및 항산화활성 -)

  • Yoon, Sun-Young;Lee, Hak-Ju;Lee, Sung-Suk;Choi, Don-Ha;Paik, Ki-Hyon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.78-84
    • /
    • 2000
  • Two flavanones and one flavone were isolated from the diethylether soluble fraction of ethanol extract of Larix leptolepis heartwood. These compounds were identified 3,3',4',5,7-pentahydroxyflavanone(taxifolin), 3,4',5,7-tetrahydroxyflavanone(aromadendrin) and 3,3',4',5,7-pentahydroxyflavone(quercetin) by instrumental analyses using UV, IR, MS and NMR spectrometries. Antioxidative activies of these compounds were investigated by 1,1-diphenyl-2-picrylhydrazyl(DPPH) free radical scavenging activity. Quercetin and taxifolin indicated high free radical scavenging activities compared to ${\alpha}$-tocopherol and BHT(butylated hydroxytoluene).

  • PDF

Flvonoids and Their Glycosides from the Bark of Salix rorida (분버들(Salix rorida) 수피의 후라보노이드 및 배당체 화합물)

  • Ham, Yeon-Ho;Bae, Young-Soo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.56-62
    • /
    • 2002
  • The air-dried bark of Salix rorida was extracted with acetone-water(7:3, v/v) and its extractives were concentrated with a vacuum evaporator. The extractives were fractionated with a series of n-hexane, chloroform, ethylacetate(EtOAc) and water on a separatory funnel. Each fraction was freeze-dried to give some dark brown powder. The EtOAc and water soluble fractions were chromatographed on a Sephadex LH-20 column using a series of aqueous methanol and ethanol-hexane mixture as eluents. The isolated compounds were tested with a cellulose TLC developed with TBA and 6% acetic acid and then visualized on UV lamp or sprayed with vanillin-HCl-EtOH. The purified compounds were flavonoids and their glycosides as follows:(+)-catechin, naringenin, salipurposide, aromadendrin, isosalipurposide, aromadendrin-7-O-𝛽-D-glucopy- ranoside and taxifolin-7-O-𝛽-D-glucopyranoside. The structures of each compounds were confirmed by 1H-NMR, 13C-NMR and mass spectra.

Studies on Biological Activity of Wood Extractives (X) - Antifungal Compounds of Hovenia dulcis - (수목추출물의 생리활성에 관한 연구(X) - 헛개나무 목부의 항균활성 물질 -)

  • Choi, Yun-Jeong;Lee, Hak-Ju;Lee, Sung-Suk;Choi, Don-Ha
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • Antimicrobial activities of plant extractives were investigated to develop a natural fungicide. Two stilbenoids and five flavonoids were isolated from wood extractives of Hovenia dulcis (Rhamnaceae) which had been selected due to its high antifungal activity among the tested species. The chemical structures of isolated compounds were determinded as : 5-hydroxy-7-methoxyflavone, 5,7-dihydroxyflavone (chrysin), 5,7-dihydroxyflavanone (pinocembrin), 3,5,7-trihydroxyflavanone (pinobanksin), 3,4',5,7-tetrahydroxyflavanone (aromadendrin), 3-hydroxy-5-methoxystilbene and 3,5-dihydroxystilbene (pinosylvin) on the basis of Mass and NMR spectroscopic data. According to the results of antifungal test, 3-hydroxy-5-methoxystilbene was evaluated as the strongest antifungal compound among the tested compounds and next were pinocembrin and pinosylvin, but those also had high hyphal growth inhibition activities against C. parasitica, T. versicolor, T. palustris and T. viride. However, pinobanksin, 5-hydroxy-7-methoxyflavone, chrysin and aromadendrin showed very low antifungal activity. In this regard, it could inferred that high antifungal activity of wood extractives of H. dulcis were derived from 3-hydroxy-5-methoxystilbene, pinocembrin and pinosylvin, respectively.

The Chemical Structures and Their Antioxidant Activity of the Components Isolated from the Heartwood of Hemiptelea davidii (시무나무(Hemiptelea davidii) 심재의 성분과 그 항산화 활성)

  • Chang, Bok-Sim;Kwon, Yong-Soo;Kim, Chang-Min
    • Korean Journal of Pharmacognosy
    • /
    • v.35 no.1 s.136
    • /
    • pp.80-87
    • /
    • 2004
  • From the $CHCl_3$ and BuOH soluble fractions of the heartwood of Hemiptelea davidii, eleven compounds have been isolated. On the basis of spectral data, they were identified as ${\beta}-sitosterol$ (1), scopoletin (2), kaempferol (3), 4-hydroxybenzoic acid (4), 2-(4-hydroxyphenyl) ethanol (5), aromadendrin (6), scopolin (7), kaempferol 6-C-glucoside (8), aromadendrin 6-C-glucoside (9), taxifolin 6-C-glucoside (10) and quercetin 6-C-glucoside (11), respectively. Among these compounds, compounds 3, 8, 10, and 11 showed potent DPPH radical scavenging activity with $IC_{50}$ values of 11.9, 14.7, 10.3 and $6.2\;{\mu}g/ml$, respectively.

Free Radical Scavengers from the Heartwood of Juniperus chinensis

  • Lim, Jong-Pil;Song, Young-Cheol;Kim, Jin-Wook;Ku, Chung-Hwan;Eun, Jae-Soon;Leem, Kang-Hyun;Kim, Dae-Keun
    • Archives of Pharmacal Research
    • /
    • v.25 no.4
    • /
    • pp.449-452
    • /
    • 2002
  • The antioxidant activity of Juniperus chinensis (Cupressaceae) was determined by measuring the radical scavenging effect on DPPH (1,1-diphenyl-2-picrylhydrazyl). The methanolic extract of J. chinensis heartwood showed the strong antioxidant activity. The antioxidant activity of n-BuOH soluble fraction was stronger than that of the others, and the fraction was subjected to purification by repeated silica gel and Sephadex LH-20 column chromatography. Quercetin, naringenin, taxifolin, aromadendrin and isoquercitrin were isolated from the n-BuOH fraction. Their structures were elucidated by physico-chemical and spectroscopic studies.

Extractives from Pollen (화분의 추출성분)

  • 이상극;김진규;함연호;박재군;배영수
    • Journal of Korea Foresty Energy
    • /
    • v.22 no.1
    • /
    • pp.30-36
    • /
    • 2003
  • 2kg of pollen extracted with EtOH(98%), concentrated, and fractionated with a series of hexane, CH$_2$Cl$_2$ EtOAc and $H_2O$ on a separately funnel. Each fraction was freeze dried to give dark-brown powder and EtOAc soluble portion of the powder was chromatographed on a Sephadex LH-20 column using a series of aqueous methanol as eluents. Spectrometric analysis such as NMR and FAB-MS including TLC were performed to characterize the structures of isolated compounds. Pollen contained a small amount of flavonol derivatives such as quercetin-3-O-$\beta$-D-glucopyranoside and kaempferol-3-O-$\beta$-D-rutinoside in addition to a small amount of flavanonol compound such as aromadendrin-5-methyl ether and acid compound such as.

  • PDF

Modulation of Suppressive Activity of Lipopolysaccharide-Induced Nitric Oxide Production by Glycosidation of Flavonoids

  • Kwon, Yong-Soo;Kim, Sung-Soo;Sohn, Soon-Joo;Kong, Pil-Jae;Cheong, Il-Young;Kim, Chang-Min;Chun, Wan-Joo
    • Archives of Pharmacal Research
    • /
    • v.27 no.7
    • /
    • pp.751-756
    • /
    • 2004
  • Flavonoids have been demonstrated to exhibit a wide range of biological activities including anti-inflammatory and neuroprotective actions. Although a significant amount of flavonoids has been identified to be present as glycosides in medicinal plants, determinations of the biological activities of flavonoids were mainly carried out with aglycones of flavonoids. Therefore, the exact role of the glycosidation of flavonoid aglycones needs to be established. In an attempt to understand the possible role of glycosidation on the modulation of the biological activities of flavonoids, diverse glycosides of kaempferol, quercetin, and aromadendrin were examined in terms of their anti-inflammatory activity determined with the suppression of lipopolysaccharide (LPS)-induced nitric oxide (NO) production in BV2 microglial cells. The results indicated that glycosidation of aglycones attenuated the suppressive activity of aglycones on LPS-induced NO production. Although attenuated, some of glycosides, depending on the position and degree of glycosidation, maintained the inhibitory capability of LPS-induced NO production. These findings suggest that glycosidation of flavonoid aglycones should be considered as an important modulator of the biological activities of flavonoids.

Flavonoids from the Leaves of Betula platyphylla var. latifolia

  • Lee, Min-Won
    • Korean Journal of Pharmacognosy
    • /
    • v.25 no.3
    • /
    • pp.199-203
    • /
    • 1994
  • Chemical examination of the leaves of Betula platyphylla var. latifolia has led to the isolation and characterization of five flavonoid glycosides including two C-glucosyl flavonoids. The structures of these compounds were elucidated as myricetin $3-O-{\alpha}-_L-rhamnoside$ (myricitrin), $quercetin-3-O-{\beta}-_D-glucopyranoside$ (isoquercitrin), $quercetin-3-O-{\beta}-_D-glucopyranoside$ (hyperoside), $nalingenin-6-C-{\beta}-_D-glucopyranoside$ (hemiphloin) and $aromadendrin-6-C-{\beta}-_D-glucopyranosidre(6-C-glucosyldihydrokaempferol)$ on the basis of physico-chemical and spectroscopic evidences.

  • PDF

Extractives of the Wood of Black Locust and the Bark of Poplar as Decay-Resistant Hardwood Tree Species (내후성 활엽수종인 아까시나무 목질부와 현사시나무 수피의 추출성분)

  • Bae, Young-Soo;Ham, Yeon-Ho
    • Journal of the Korean Wood Science and Technology
    • /
    • v.28 no.3
    • /
    • pp.52-61
    • /
    • 2000
  • Black locust(Robinia pseudoacacia) and poplar(Populus alba ${\times}$ glandulosa) trees were collected, extracted with acetone-$H_2O$(7:3, v/v) after drying, fractionated with hexane, chloroform and ethylacetate, and freeze dried to get some brown powder. Each fraction of the powder was chromatographed on a Sephadex LH-20 column using a series of aqueous methanol and ethanol-hexane mixture as eluting solvents. The wood extractives of black locust contained (+)-leucorobinetinidin as flavan, robtin as flavanone and dihydrorobinetin as flavanonol, and robinetin as flavonol. The poplar bark extractives contained various kinds of phenolic compounds : (+)-catechin as flavan, naringeoin, eriodictyol, sakuranetin, aromadendrin and taxifolin as flavanonol, salireposide as salicin derivative, and minor compounds such as aesculin and p-coumaric acid. However, aesculin has not been reported as a constituent of the poplar bark in Korea yet. NMR and FAB-MS analyses were done to elucidate the structures of isolated phenolic constituents.

  • PDF