• 제목/요약/키워드: arithmetic intrinsic Bayes factor

검색결과 8건 처리시간 0.021초

Default Bayes Factors for Testing the Equality of Poisson Population Means

  • Son, Young Sook;Kim, Seong W.
    • Communications for Statistical Applications and Methods
    • /
    • 제7권2호
    • /
    • pp.549-562
    • /
    • 2000
  • Default Bayes factors are computed to test the equality of one Poisson population mean and the equality of two independent Possion population means. As default priors are assumed Jeffreys priors, noninformative improper priors, and default Bayes factors such as three intrinsic Bayes factors of Berger and Pericchi(1996, 1998), the arithmetic, the median, and the geometric intrinsic Bayes factor, and the factional Bayes factor of O'Hagan(1995) are computed. The testing results by each default Bayes factor are compared with those by the classical method in the simulation study.

  • PDF

DEFAULT BAYESIAN INFERENCE OF REGRESSION MODELS WITH ARMA ERRORS UNDER EXACT FULL LIKELIHOODS

  • Son, Young-Sook
    • Journal of the Korean Statistical Society
    • /
    • 제33권2호
    • /
    • pp.169-189
    • /
    • 2004
  • Under the assumption of default priors, such as noninformative priors, Bayesian model determination and parameter estimation of regression models with stationary and invertible ARMA errors are developed under exact full likelihoods. The default Bayes factors, the fractional Bayes factor (FBF) of O'Hagan (1995) and the arithmetic intrinsic Bayes factors (AIBF) of Berger and Pericchi (1996a), are used as tools for the selection of the Bayesian model. Bayesian estimates are obtained by running the Metropolis-Hastings subchain in the Gibbs sampler. Finally, the results of numerical studies, designed to check the performance of the theoretical results discussed here, are presented.

Intrinsic Bayes Factors for Exponential Model Comparison with Censored Data

  • Kim, Dal-Ho;Kang, Sang-Gil;Kim, Seong W.
    • Journal of the Korean Statistical Society
    • /
    • 제29권1호
    • /
    • pp.123-135
    • /
    • 2000
  • This paper addresses the Bayesian hypotheses testing for the comparison of exponential population under type II censoring. In Bayesian testing problem, conventional Bayes factors can not typically accommodate the use of noninformative priors which are improper and are defined only up to arbitrary constants. To overcome such problem, we use the recently proposed hypotheses testing criterion called the intrinsic Bayes factor. We derive the arithmetic, expected and median intrinsic Bayes factors for our problem. The Monte Carlo simulation is used for calculating intrinsic Bayes factors which are compared with P-values of the classical test.

  • PDF

와이블 수명자료들에 대한 베이지안 가설검정 (Bayesian Hypotheses Testing for the Weibull Lifetime Data)

  • 강상길;김달호;조장식
    • 품질경영학회지
    • /
    • 제28권3호
    • /
    • pp.1-10
    • /
    • 2000
  • In this paper, we address the Bayesian hypotheses testing for the comparison of Weibull distributions. In Bayesian testing problem, conventional Bayes factors can not typically accommodate the use of noninformative priors which are Improper and are defined only up to arbitrary constants. To overcome such problem, we use the recently proposed hypotheses testing criterion called the intrinsic Bayes factor. We derive the arithmetic and median intrinsic Bayes factors for the comparison of Weibull lifetime model and we use these results to analyze real data sets.

  • PDF

Hypotheses Testing for the Shape Parameter of the Weibull Lifetime Data

  • Kang, Sang-Gil;Kim, Dal-Ho;Cho, Jang-Sik
    • 품질경영학회지
    • /
    • 제27권4호
    • /
    • pp.153-166
    • /
    • 1999
  • In this paper, we address the Bayesian hypotheses testing for the shape parameter of weibull model. In Bayesian testing problem, conventional Bayes factors can not typically accommodate the use of noninformative priors which are improper and are defined only up to arbitrary constants. To overcome such problem, we use the recently proposed hypotheses testing criterion called the intrinsic Bayes factor. We derive the arithmetic and median intrinsic Bayes factors and use these results to analyze real data sets.

  • PDF

Bayes Factors for Independence and Symmetry in Freund's Bivariate Exponetial Model with Censored Data

  • Jang Sik;Dal Ho;Sang Gil
    • Communications for Statistical Applications and Methods
    • /
    • 제7권1호
    • /
    • pp.151-164
    • /
    • 2000
  • In this paper we consider the Bayesian hypothese testing for independence and symmetry in Freund's bivariate exponential model with censored data In Bayesian testing problem we use the noninformative priors for parameters which are improper and are defined only up to arbitrary constants. And we use the recently proposed hypotheses testing criterion called the intrinsic Bayes factor. Also we derive the arithmetic and median intrinsic Bayes factors and use these results of analyze some data sets.

  • PDF

Default Bayesian Method for Detecting the Changes in Sequences of Independent Exponential and Poisson Random Variates

  • Jeong, Su-Youn;Son, Young-Sook
    • Communications for Statistical Applications and Methods
    • /
    • 제9권1호
    • /
    • pp.129-139
    • /
    • 2002
  • Default Bayesian method for detecting the changes in sequences of independent exponential random variates and independent Poisson random variates is considered. Noninformative priors are assumed for all the parameters in both of change models. Default Bayes factors, AIBF, MIBF, FBF, to check whether there is any change or not on each sequence and the posterior probability densities of change at each time point are derived. Theoretical results discussed in this paper are applied to some numerical data.

Bayesian Tests for Independence and Symmetry in Freund's Bivariate Exponential Model

  • Cho, Jang-Sik;Kim, Dal-Ho;Kang, Sang-Gil
    • Journal of the Korean Data and Information Science Society
    • /
    • 제10권1호
    • /
    • pp.135-146
    • /
    • 1999
  • In this paper, we consider the Bayesian hypotheses testing for independence and symmetry in Freund's bivariate exponential model. In Bayesian testing problem, we use the noninformative priors for parameters which are improper and are defined only up to arbitrary constants. And we use the recently proposed hypotheses testing criterion called the intrinsic Bayes factor. Also we derive the arithmetic and median intrinsic Bayes factors and use these results to analyze some data sets.

  • PDF