• Title/Summary/Keyword: arithmetic function

Search Result 186, Processing Time 0.023 seconds

An Implementation of Digital Neural Network Using Systolic Array Processor (영어 수계를 이용한 디지털 신경망회로의 실현)

  • 윤현식;조원경
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.2
    • /
    • pp.44-50
    • /
    • 1993
  • In this paper, we will present an array processor for implementation of digital neural networks. Back-propagation model can be formulated as a consecutive matrix-vector multiplication problem with some prespecified thresholding operation. This operation procedure is suited for the design of an array processor, because it can be recursively and repeatedly executed. Systolic array circuit architecture with Residue Number System is suggested to realize the efficient arithmetic circuit for matrix-vector multiplication and compute sigmoid function. The proposed design method would expect to adopt for the application field of neural networks, because it can be realized to currently developed VLSI technology.

  • PDF

FUZZY POLYNOMIAL REGRESSION ANALYSIS USING SHAPE PRESERVING IOERATION

  • Hong, Dug-Hun;Do, Hae-Young
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.3
    • /
    • pp.869-880
    • /
    • 2001
  • In this paper, we describe a method for fuzzy polynomial regression analysis for fuzzy input-output data using shape preserving operations based on Tanaka’s approach. Shape preserving operations simplifies the computation of fuzzy arithmetic operations. We derive the solution using general linear program.

Fuzzy least squares polynomial regression analysis using shape preserving operations

  • Hong, Dug-Hun;Hwang, Chang-Ha;Do, Hae-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.5
    • /
    • pp.571-575
    • /
    • 2003
  • In this paper, we describe a method for fuzzy polynomial regression analysis for fuzzy input--output data using shape preserving operations for least-squares fitting. Shape preserving operations simplifies the computation of fuzzy arithmetic operations. We derive the solution using mixed nonlinear program.

Optimal Strategies for Robust Design of Products of Processes

  • Hwang, Inkeuk;Park, Kongjin
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.56
    • /
    • pp.55-64
    • /
    • 2000
  • There is more than a single quality characteristic and they are often of varying or mixed target types. The purpose of this paper is to develop general strategies for solving the multiple response robust design problem. The desirability function provides an important tool to solve problems that have different types of target since the desirability values all the range between zero and one. Several combinations of arithmetic averages, geometric averages, and standard deviations are used in the various strategies to find the best design point.

  • PDF

ON A CLASS OF BIVARIATE MEANS INCLUDING A LOT OF OLD AND NEW MEANS

  • Raissouli, Mustapha;Rezgui, Anis
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.239-251
    • /
    • 2019
  • In this paper we introduce a new formulation of symmetric homogeneous bivariate means that depends on the variation of a given continuous strictly increasing function on (0, ${\infty}$). It turns out that this class of means includes a lot of known bivariate means among them the arithmetic mean, the harmonic mean, the geometric mean, the logarithmic mean as well as the first and second Seiffert means. Using this new formulation we introduce a lot of new bivariate means and derive some mean-inequalities.

A Still Image Compression System using Bitmatrix Arithmetic Coding (비트매트릭스 산술 부호 방식의 정지영상 압축 시스템)

  • Lee, Je-Myung;Lee, Ho-Suk
    • The KIPS Transactions:PartB
    • /
    • v.11B no.4
    • /
    • pp.411-420
    • /
    • 2004
  • We propose a novel still image compression system, which is superior in its function than the JPEG2000 system developed by David Taubman. The system shows 40 : 1 high compression ratio using $2\times2$ bitmatrix subblock coding. The $2\times2$ bitmatrix subblock is constructed in the bitplanes by organizing the bits into subblocks composing of $2\times2$matrices. The arithmetic coding performs the high compression by the bitmatrices in the subblock. The input of the system consists of a segmentation mode and a ROI(Region Of Interest) mode. In segmentation mode, the input image is segmented into a foreground consisting of letters and a background consisting of the remaining region. In ROI mode, the input image is represented by the region of interest window. The high compression ratio shows that the proposed system is competent among the JPEG2000 products currently in the market. This system also uses gray coding to improve the compression ratio.

Brainwave Activities of the Cognitive Individual Differences in Computerized Arithmetic Addition by Implicit Association Test (컴퓨터 덧셈학습의 인지적 개인차에 대한 암묵적 연합검사를 적용한 뇌파 분석)

  • Kwon, Hyung-Kyu
    • Journal of The Korean Association of Information Education
    • /
    • v.15 no.4
    • /
    • pp.635-644
    • /
    • 2011
  • This research analyzed the brainwave activities and brain hemispherity to find out any implications to design the connections between the activities of the brain function and the computerized arithmetic addition in two difficulty levels: easy: 1-5 vs. hard: 6-9. Thus, in developing the brain based math learning for the computer education by implicit association test(IAT) indicated the significant results for the exclusive brain location and the brain hemispherity on the theta, alpha, low alpha, beta brainwaves by QEEG analysis. The results of this study physiologically supported the theoretical background for the computerized math learning skills as well as the math learning material development. It shows the difficulty levels of math information education and the brain activities on cognitive process of the learner continued on the possible investigation of the brain science.

  • PDF

Study for Block Cipher Operating Mode Using Counter (카운터를 사용한 블록암호 운영모드에 관한 연구)

  • Yang, Sang-Keun;Kim, Gil-Ho;Park, Chang-Soo;Cho, Gyeong-Yeon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.243-246
    • /
    • 2008
  • This thesis suggests block cipher operating mode using ASR(Arithmetic Shift Register). ASR is ratted arithmetic shift register which is sequence that is not 0 but initial value $A_0$ multiplies not 0 or 1 but free number D on $GF(2^n)$. This thesis proposes ASR mode which changes output multiplying d and Floating ASR mode which has same function but having strengthened stability altering d. If we use ASR's output as a counter, there's advantage that it has higher stability and better speed than CTR. Also, ASR mode and FASR mode have advantage of Random access which is not being functioned on CTR mode, they can be widely used to any part which Random access is needed.

  • PDF

Implementation and Performance Enhancement of Arithmetic Adder for Fully Homomorphic Encrypted Data (완전동형암호로 암호화된 데이터에 적합한 산술 가산기의 구현 및 성능향상에 관한 연구)

  • Seo, Kyongjin;Kim, Pyong;Lee, Younho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.3
    • /
    • pp.413-426
    • /
    • 2017
  • In this paper, we propose an adder that can be applied to data encrypted with a fully homomorphic encryption scheme and an addition method with improved performance that can be applied when adding multiple data. The proposed arithmetic adder is based on the Kogge-Stone Adder method with the optimal circuit level among the existing hardware-based arithmetic adders and suitable to apply the cryptographic SIMD (Single Instruction for Multiple Data) function on encrypted data. The proposed multiple addition method does not add a large number of data by repeatedly using Kogge-Stone Adder which guarantees perfect addition result. Instead, when three or more numbers are to be added, three numbers are added to C (Carry-out) and S (Sum) using the full-adder circuit implementation. Adding with Kogge-Stone Adder is only when two numbers are finally left to be added. The performance of the proposed method improves dramatically as the number of data increases.

CURVES WITH MAXIMAL RANK, BUT NOT ACM, WITH VERY HIGH GENERA IN PROJECTIVE SPACES

  • Ballico, Edoardo
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1355-1370
    • /
    • 2019
  • A curve $X{\subset}\mathbb{P}^r$ has maximal rank if for each $t{\in}\mathbb{N}$ the restriction map $H^0(\mathcal{O}_{\mathbb{P}r}(t)){\rightarrow}H^0(\mathcal{O}_X(t))$ is either injective or surjective. We show that for all integers $d{\geq}r+1$ there are maximal rank, but not arithmetically Cohen-Macaulay, smooth curves $X{\subset}\mathbb{P}^r$ with degree d and genus roughly $d^2/2r$, contrary to the case r = 3, where it was proved that their genus growths at most like $d^{3/2}$ (A. Dolcetti). Nevertheless there is a sector of large genera g, roughly between $d^2/(2r+2)$ and $d^2/2r$, where we prove the existence of smooth curves (even aCM ones) with degree d and genus g, but the only integral and non-degenerate maximal rank curves with degree d and arithmetic genus g are the aCM ones. For some (d, g, r) with high g we prove the existence of reducible non-degenerate maximal rank and non aCM curves $X{\subset}\mathbb{P}^r$ with degree d and arithmetic genus g, while (d, g, r) is not realized by non-degenerate maximal rank and non aCM integral curves.