2019년 12월경 후베이 우한시에서 발생한 코로나19 바이러스가 점차 줄어드는 듯 보였으나, 2020년 11월, 2021년 6월 기준으로 점차 늘어나고 있으며, 전세계적으로 총 1억 9천 2백만명, 대한민국 기준 총 확진자는 대략 18만4천명으로 추정된다. 이에 따른 대책으로 중앙재난안전대책본부는 사회적 거리두기 4단계를 시행하면서 강력한 대응책을 내고있지만, 델타바이러스등 전염성이 강한 코로나 변이 바이러스가 기승을 부리면서 국내 일일 확진자 수는 1800명대 까지 증가하게 되었다. 그에따라 코로나바이러스의 심각성을 강조하고자 코로나 누적 확진자 수를 ARIMA 알고리즘을 이용해 예측한다. 그 과정에서 추세와 계절성을 제거하기 위해서 차분을 이용하고, MA, AR, 자기상관함수와 편자기상관함수를 이용해 ARIMA에서 p,d,q값을 결정하고 예측한다. 마지막으로 예측값과 실제값을 비교해 얼마나 잘 예측되었는지 평가한다.
전기자동차는 운전자가 바뀌거나 운전자의 주행습관이 바뀜에 따라 SOH가 급격하게 감소할 수 있고, 이러한 운전습관은 배터리에 과부하를 주어 배터리 수명의 단축 및 안전 문제를 일으킬 수 있다. 본 논문에서는 전기자동차의 계기판에 사용자 패턴 변화에 따른 SOH의 변화를, 실시간으로 나타내기 위하여, NASA에서 제공하는 배터리 데이터 세트를 학습하고, 기계학습 모델을 구축 후, 변화된 사용자 패턴을 포함한 배터리에 대해 선형회귀와 ARIMA 모델로 예측하는 실험을 진행하였다. 그 결과, 변화된 사용자 패턴에 따른 변경된 수명을 예측하는 경우, 배터리 데이터가 많이 확보되었다면 선형회귀가 유용하고, 데이터가 많이 확보되지 않은 경우는 ARIMA 모델이 대안이 될 수 있다는 연구결과를 얻을 수 있었다.
본 연구는 전통적인 통계기반 ARIMA(Auto-Regressive Integrated Moving Average) 모델과 딥러닝 기반 LSTM(Long Short-Term Memory) 모델을 활용하여 굴착 현장의 지중경사계 데이터를 통한 흙막이 벽체 변형을 예측하고, 두 모델의 예측 성능을 비교 분석하였다. ARIMA 모델은 시간의 흐름에 따른 시계열 데이터의 선형적 패턴을 분석하는 데 강점을 보이는 반면, LSTM은 데이터의 복잡한 비선형 패턴과 장기 의존성을 포착하는 데 우수한 능력을 보여주었다. 본 연구는 흙막이 벽체 변형 예측을 위해 지중경사계 계측 데이터에 대한 전처리, 다양한 시계열 데이터 길이 및 입력변수 조건 등에 따른 성능 평가를 포함하였으며, LSTM 모델이 ARIMA 모델에 비해 통계적으로 유의미한 예측 성능 향상을 확인하였다. 본 연구의 결과는 굴착 현장에서의 지중경사계 데이터를 활용한 흙막이 벽체의 안정성 평가에 LSTM 모델을 효과적으로 적용할 수 있음을 보여준다. 또한 이를 바탕으로 향후 굴착 현장 전체에 대한 안전모니터링 시스템 구축과 시계열 예측 모델 발전에 기여할 것으로 기대된다.
이 논문에서는 네트워크의 QoS에 가장큰 영향을 미치는 네트워크 선로 이용률의 과거데이터를 기반으로 단기간 예측과 계절성(seasonality) 예측에 적합한 계절자기회귀이동평균(SARIMA: seasonal ARIMA) 모형을 적용하여 앞으로의 시간대별 선로 이용률을 예측하고 그 신뢰 구간을 추정함으로써 확류에 근거한 선로 이용률의 임계값 위반 시점을 예측할 수 있으며 확률에 근거한 신뢰성을 제공할 수 있다 또한 제시한 모델의 적합성 여부를 평가하였으며 실험을 통하여 적절한 수준의 임계값과 임계값 탐지의 기준이 되는 탐지 확률값을 추론함으로써 본 알고리즘의 성능을 최대화하였다.
아파트 건설원가 추정지수와 그 예측모델은 아파트 분양가격 변동의 적정성을 평가하고 건설기 업이 적정이윤을 계상하도록 유도할 수 있다. 본 연구에서는 기존의 철골 철골조주택 공사비지수를 개선하고, 개선된 지수를 대상으로 X-12 ARIMA 방법에 의한 예측방법을 개발하였다 연구결과 최근 5년간 노무비를 제외하고 약 33.7%의 아파트 건설 원가상승요인이 발생하였으며, 향후 3년간 16.8%가량 추가 상승할 것으로 예측되었다. 이러한 정량적인 연구결과는 최근의 높은 아파트 분양가격의 적정성을 간접적으로 평가하는 지표로 활용될 수 있고, 아파트 건설원가의 변동패턴을 이해하는데 도움을 줄 수 있다.
본 논문은, 장기기억 특성과 이분산성을 고려한 인터넷 트래픽 예측 모형을 제안하고자 한다. 트래픽 과부하를 대비하기 위해서, 트래픽 용량은 트래픽의 예측치와 트래픽의 변동 크기에 따라 트래픽의 최대용량을 설정하여야 한다. 이를 위하여 교내 트래픽 자료 중 교내로 들어오는 트래픽과 교외로 나가는 트래픽에 이분산성과 장기기억 모형의 유용성을 확인하였다. 이에 대하여 AR-GARCH 모형, ARMA-GARCH 모형과 장기기억모형인 Fractional ARIMA와 장기기억과 이분산성을 고려한 Fractional ARMA-GARCH 모형을 적용하여 모형의 예측성능을 비교하였다.
최근 들어 전 세계적으로 태풍과 가뭄 그리고 국지적인 호우 등의 기상변화로 인하여 수자원 종합적인 개발과 이용계획에 대한 전문적인 예측이 필요하다. 우리나라는 홍수기에 집중적인 강우 발생으로 인하여 평수기와 유입량 차이가 심한 수문특성을 가지고 있어 안정적인 수자원 공급에 대한 장기적인 관점에서 이수와 치수정책을 수립해야 한다. 본 연구는 1985년 1월부터 2008년 12월까지 24년에 해당하는 한정된 기간의 짧은 유출량 자료를 갖는 대청댐 유역에서의 시계열 유입량 특성을 Box-Jenkins모형 또는 ARIMA모형을 적용하여 추계학적 분석을 실시하였다. 월유입량과 같은 비정상성 시계열에 적용될 수 있는 적절한 추계학적 모형을 찾기 위하여 모형의 식별과 모형의 추정, 모형의 검진 등의 3단계에 걸친 분석을 실시하였다. 연구결과 대청댐 월유입량 예측모형으로 승법계절 ARIMA$(0,1,2){\times}(1,1,0)_{12}$이 유도되었으며, 이 모형으로 1, 3, 6, 12개월의 선행기간에 대한 실시간 유입량을 예측하였다. 예측된 유입량을 2008년 실측유입량과 비교한 결과 6개월에 대한 예측의 정확성이 가장 높게 나타났다. 또한 평수기와 홍수기를 구분한 예측도 실시하였으며, 평수기는 1개월 홍수기는 3개월 간격으로 예측하는 것이 가장 적절한 것으로 분석되었다.
본 논문에서는 R에서 시계열 자료 예측을 위한 자동화 함수에 대하여 고찰하고 그 예측 성능을 비교합니다. 대표적인 시계열 예측 방법인 지수 평활 모형과 ARIMA (autoregressive integrated moving average) 모형을 대상으로 하였으며, 이들의 모형화 및 예측 자동화를 가능하게 하는 R의 4가지 자동화 함수인 forecast::ets(), forecast::auto.arima(), smooth::es()와 smooth::auto.ssarima()를 대상으로 하였습니다. 이들의 예측 성능을 비교하기 위하여 3,003가지의 시계열로 구성되어 있는 M3-Competition자료와 3가지의 정확성 척도를 사용하였습니다. 4가지 자동화 함수는 모형화의 다양성 및 편리성, 예측 정확도 및 실행 시간 등에서 각자 장단점이 있음을 확인하였습니다.
보이스피싱은 가짜 금융기관, 검찰청, 경찰청 등을 사칭하여 개인의 인증번호와 신용카드 정보를 알아내거나 예금을 인출하게 하여 탈취하는 사이버 범죄이다. 최근에는 교묘하고도 은밀한 방법으로 보이스피싱이 이루어지고 있다. '18~'21년 발생한 보이스피싱의 추세를 분석하면, 보이스피싱이 발생되는 시기에 예금 인출이 급격하게 증가하여 시계열 분석에 모호함을 주는 계절성이 존재함을 발견하였다. 이에 본 연구에서는 보이스피싱 발생 추이의 정확한 예측을 위해서 계절성을 X-12 계절성 조정 방법론으로 조정하고, ARIMA 모형을 이용하여 2022년 보이스피싱 발생을 예측하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.