• 제목/요약/키워드: arima

검색결과 493건 처리시간 0.021초

ARIMA모형을 이용한 코로나19 확진자수 예측 (Prediction of Covid-19 confirmed number of cases using ARIMA model)

  • 김재호;김장영
    • 한국정보통신학회논문지
    • /
    • 제25권12호
    • /
    • pp.1756-1761
    • /
    • 2021
  • 2019년 12월경 후베이 우한시에서 발생한 코로나19 바이러스가 점차 줄어드는 듯 보였으나, 2020년 11월, 2021년 6월 기준으로 점차 늘어나고 있으며, 전세계적으로 총 1억 9천 2백만명, 대한민국 기준 총 확진자는 대략 18만4천명으로 추정된다. 이에 따른 대책으로 중앙재난안전대책본부는 사회적 거리두기 4단계를 시행하면서 강력한 대응책을 내고있지만, 델타바이러스등 전염성이 강한 코로나 변이 바이러스가 기승을 부리면서 국내 일일 확진자 수는 1800명대 까지 증가하게 되었다. 그에따라 코로나바이러스의 심각성을 강조하고자 코로나 누적 확진자 수를 ARIMA 알고리즘을 이용해 예측한다. 그 과정에서 추세와 계절성을 제거하기 위해서 차분을 이용하고, MA, AR, 자기상관함수와 편자기상관함수를 이용해 ARIMA에서 p,d,q값을 결정하고 예측한다. 마지막으로 예측값과 실제값을 비교해 얼마나 잘 예측되었는지 평가한다.

선형회귀 및 ARIMA 모델을 이용한 배터리 사용자 패턴 변화 추적 연구 (A study of Battery User Pattern Change tracking method using Linear Regression and ARIMA Model)

  • 박종용;유민혁;노태민;신대견;김성권
    • 한국전자통신학회논문지
    • /
    • 제17권3호
    • /
    • pp.423-432
    • /
    • 2022
  • 전기자동차는 운전자가 바뀌거나 운전자의 주행습관이 바뀜에 따라 SOH가 급격하게 감소할 수 있고, 이러한 운전습관은 배터리에 과부하를 주어 배터리 수명의 단축 및 안전 문제를 일으킬 수 있다. 본 논문에서는 전기자동차의 계기판에 사용자 패턴 변화에 따른 SOH의 변화를, 실시간으로 나타내기 위하여, NASA에서 제공하는 배터리 데이터 세트를 학습하고, 기계학습 모델을 구축 후, 변화된 사용자 패턴을 포함한 배터리에 대해 선형회귀와 ARIMA 모델로 예측하는 실험을 진행하였다. 그 결과, 변화된 사용자 패턴에 따른 변경된 수명을 예측하는 경우, 배터리 데이터가 많이 확보되었다면 선형회귀가 유용하고, 데이터가 많이 확보되지 않은 경우는 ARIMA 모델이 대안이 될 수 있다는 연구결과를 얻을 수 있었다.

시계열 분석을 이용한 흙막이 벽체 변형 예측 (Time Series Analysis for Predicting Deformation of Earth Retaining Walls)

  • 서승환;정문경
    • 한국지반공학회논문집
    • /
    • 제40권2호
    • /
    • pp.65-79
    • /
    • 2024
  • 본 연구는 전통적인 통계기반 ARIMA(Auto-Regressive Integrated Moving Average) 모델과 딥러닝 기반 LSTM(Long Short-Term Memory) 모델을 활용하여 굴착 현장의 지중경사계 데이터를 통한 흙막이 벽체 변형을 예측하고, 두 모델의 예측 성능을 비교 분석하였다. ARIMA 모델은 시간의 흐름에 따른 시계열 데이터의 선형적 패턴을 분석하는 데 강점을 보이는 반면, LSTM은 데이터의 복잡한 비선형 패턴과 장기 의존성을 포착하는 데 우수한 능력을 보여주었다. 본 연구는 흙막이 벽체 변형 예측을 위해 지중경사계 계측 데이터에 대한 전처리, 다양한 시계열 데이터 길이 및 입력변수 조건 등에 따른 성능 평가를 포함하였으며, LSTM 모델이 ARIMA 모델에 비해 통계적으로 유의미한 예측 성능 향상을 확인하였다. 본 연구의 결과는 굴착 현장에서의 지중경사계 데이터를 활용한 흙막이 벽체의 안정성 평가에 LSTM 모델을 효과적으로 적용할 수 있음을 보여준다. 또한 이를 바탕으로 향후 굴착 현장 전체에 대한 안전모니터링 시스템 구축과 시계열 예측 모델 발전에 기여할 것으로 기대된다.

ARIMA 모델을 이용한 설로 이용률의 임계값 위반 예측 기법 (Prediction Algorithm of Threshold Violation in Line Utilization using ARIMA model)

  • 조강흥;조강홍;안성진;안성진;정진욱
    • 한국통신학회논문지
    • /
    • 제25권8A호
    • /
    • pp.1153-1159
    • /
    • 2000
  • 이 논문에서는 네트워크의 QoS에 가장큰 영향을 미치는 네트워크 선로 이용률의 과거데이터를 기반으로 단기간 예측과 계절성(seasonality) 예측에 적합한 계절자기회귀이동평균(SARIMA: seasonal ARIMA) 모형을 적용하여 앞으로의 시간대별 선로 이용률을 예측하고 그 신뢰 구간을 추정함으로써 확류에 근거한 선로 이용률의 임계값 위반 시점을 예측할 수 있으며 확률에 근거한 신뢰성을 제공할 수 있다 또한 제시한 모델의 적합성 여부를 평가하였으며 실험을 통하여 적절한 수준의 임계값과 임계값 탐지의 기준이 되는 탐지 확률값을 추론함으로써 본 알고리즘의 성능을 최대화하였다.

  • PDF

X-12 ARIMA를 이용한 아파트 원가의 변동분석 및 예측모델 개발 (Time Series Analysis and Development of Forecasting Model in Apartment House Cost Using X-12 ARIMA)

  • 조훈희
    • 한국건설관리학회논문집
    • /
    • 제6권6호
    • /
    • pp.98-106
    • /
    • 2005
  • 아파트 건설원가 추정지수와 그 예측모델은 아파트 분양가격 변동의 적정성을 평가하고 건설기 업이 적정이윤을 계상하도록 유도할 수 있다. 본 연구에서는 기존의 철골 철골조주택 공사비지수를 개선하고, 개선된 지수를 대상으로 X-12 ARIMA 방법에 의한 예측방법을 개발하였다 연구결과 최근 5년간 노무비를 제외하고 약 33.7%의 아파트 건설 원가상승요인이 발생하였으며, 향후 3년간 16.8%가량 추가 상승할 것으로 예측되었다. 이러한 정량적인 연구결과는 최근의 높은 아파트 분양가격의 적정성을 간접적으로 평가하는 지표로 활용될 수 있고, 아파트 건설원가의 변동패턴을 이해하는데 도움을 줄 수 있다.

장기기억 특성과 이분산성을 고려한 인터넷 트래픽 예측을 위한 시계열 모형 연구 (A Study on the Short Term Internet Traffic Forecasting Models on Long-Memory and Heteroscedasticity)

  • 손흥구;김삼용
    • 응용통계연구
    • /
    • 제26권6호
    • /
    • pp.1053-1061
    • /
    • 2013
  • 본 논문은, 장기기억 특성과 이분산성을 고려한 인터넷 트래픽 예측 모형을 제안하고자 한다. 트래픽 과부하를 대비하기 위해서, 트래픽 용량은 트래픽의 예측치와 트래픽의 변동 크기에 따라 트래픽의 최대용량을 설정하여야 한다. 이를 위하여 교내 트래픽 자료 중 교내로 들어오는 트래픽과 교외로 나가는 트래픽에 이분산성과 장기기억 모형의 유용성을 확인하였다. 이에 대하여 AR-GARCH 모형, ARMA-GARCH 모형과 장기기억모형인 Fractional ARIMA와 장기기억과 이분산성을 고려한 Fractional ARMA-GARCH 모형을 적용하여 모형의 예측성능을 비교하였다.

계절 ARIMA모형을 이용한 대청댐 유역 실시간 유입량 예측에 관한 연구 (A Study on the Real Time Forecasting for Monthly Inflow of Daecheong Dam using Seasonal ARIMA Model)

  • 김건순;안재현
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2010년도 학술발표회
    • /
    • pp.1395-1399
    • /
    • 2010
  • 최근 들어 전 세계적으로 태풍과 가뭄 그리고 국지적인 호우 등의 기상변화로 인하여 수자원 종합적인 개발과 이용계획에 대한 전문적인 예측이 필요하다. 우리나라는 홍수기에 집중적인 강우 발생으로 인하여 평수기와 유입량 차이가 심한 수문특성을 가지고 있어 안정적인 수자원 공급에 대한 장기적인 관점에서 이수와 치수정책을 수립해야 한다. 본 연구는 1985년 1월부터 2008년 12월까지 24년에 해당하는 한정된 기간의 짧은 유출량 자료를 갖는 대청댐 유역에서의 시계열 유입량 특성을 Box-Jenkins모형 또는 ARIMA모형을 적용하여 추계학적 분석을 실시하였다. 월유입량과 같은 비정상성 시계열에 적용될 수 있는 적절한 추계학적 모형을 찾기 위하여 모형의 식별과 모형의 추정, 모형의 검진 등의 3단계에 걸친 분석을 실시하였다. 연구결과 대청댐 월유입량 예측모형으로 승법계절 ARIMA$(0,1,2){\times}(1,1,0)_{12}$이 유도되었으며, 이 모형으로 1, 3, 6, 12개월의 선행기간에 대한 실시간 유입량을 예측하였다. 예측된 유입량을 2008년 실측유입량과 비교한 결과 6개월에 대한 예측의 정확성이 가장 높게 나타났다. 또한 평수기와 홍수기를 구분한 예측도 실시하였으며, 평수기는 1개월 홍수기는 3개월 간격으로 예측하는 것이 가장 적절한 것으로 분석되었다.

  • PDF

R에서 자동화 예측 함수에 대한 성능 비교 (Performance comparison for automatic forecasting functions in R)

  • 오지우;성병찬
    • 응용통계연구
    • /
    • 제35권5호
    • /
    • pp.645-655
    • /
    • 2022
  • 본 논문에서는 R에서 시계열 자료 예측을 위한 자동화 함수에 대하여 고찰하고 그 예측 성능을 비교합니다. 대표적인 시계열 예측 방법인 지수 평활 모형과 ARIMA (autoregressive integrated moving average) 모형을 대상으로 하였으며, 이들의 모형화 및 예측 자동화를 가능하게 하는 R의 4가지 자동화 함수인 forecast::ets(), forecast::auto.arima(), smooth::es()와 smooth::auto.ssarima()를 대상으로 하였습니다. 이들의 예측 성능을 비교하기 위하여 3,003가지의 시계열로 구성되어 있는 M3-Competition자료와 3가지의 정확성 척도를 사용하였습니다. 4가지 자동화 함수는 모형화의 다양성 및 편리성, 예측 정확도 및 실행 시간 등에서 각자 장단점이 있음을 확인하였습니다.

ARIMA 모형을 이용한 보이스피싱 발생 추이 예측 (Forecasting the Occurrence of Voice Phishing using the ARIMA Model)

  • 추정호;주용휘;엄정호
    • 융합보안논문지
    • /
    • 제22권3호
    • /
    • pp.79-86
    • /
    • 2022
  • 보이스피싱은 가짜 금융기관, 검찰청, 경찰청 등을 사칭하여 개인의 인증번호와 신용카드 정보를 알아내거나 예금을 인출하게 하여 탈취하는 사이버 범죄이다. 최근에는 교묘하고도 은밀한 방법으로 보이스피싱이 이루어지고 있다. '18~'21년 발생한 보이스피싱의 추세를 분석하면, 보이스피싱이 발생되는 시기에 예금 인출이 급격하게 증가하여 시계열 분석에 모호함을 주는 계절성이 존재함을 발견하였다. 이에 본 연구에서는 보이스피싱 발생 추이의 정확한 예측을 위해서 계절성을 X-12 계절성 조정 방법론으로 조정하고, ARIMA 모형을 이용하여 2022년 보이스피싱 발생을 예측하였다.