본 연구는 $\circled1$Cellular Automata(이하 CA)모형을 기반으로 대규모 네트워크에 적용 가능한 보다 현실적인 CA차량모형 구축. $\circled2$구축된 CA차량모형을 이용한 차량 모의실험기의 개발과 개발된 차량 모의실험기를 이용한 단기링크통행시간 예측으로 구성된다. 구축된 CA차량추종모형은 기존의 CA차량추종모형 보다 현실적으로 감속을 통한 정지과정을 설명하면서 거시적 지표인 교통량-밀도-속도관계를 설명하였다. 또한 링크의 유출교통량(Outflow)을 제어하기 위한 차량의 링크전이모형은 기존의 차량 링크전이모형에 비하여 보다 안정된 대기차량을 형성하였다. 단기링크통행시간 예측을 위한 차량모의실험기는 대규모 가로망에 적용이 가능하도록 차량묶음(Packet, 이하차량묶음)방식과 링크기반 모의실험방식으로 컴퓨터의 연산 수행속도 및 메모리를 효율적으로 처리할 수 있었으며, 기존의 시계열자료 예측기법에서 고려할 수 없었던 차량의 행태 및 링크 상에서 발생하는 이동류 과포화, 뒷막힘현상 등의 메커니즘을 고려함으로서 기존 시계열자료 예측기법에 비하여 우수한 예측력을 보였다.
국내산 밤나무 목재의 효율적 이용을 위한 기초 자료를 얻기 위하여 밤나무 7품종(단택, 이취, 이평, 만성, 은기, 유마, 축파)의 목재 해부학적 특성의 방사방향 변이성을 조사하였다. 즉, 횡단면에서 도관요소의 방사 및 접선 직경, 개수 및 방사조직 밀도를 그리고 접선단면에서 방사조직 높이 및 개수를 광학현미경법으로 측정하였다. 밤나무 7품종 목재에 있어 조재 도관요소의 방사 직경이 접선 직경보다 더 컸으며, 방사 및 접선 직경은 수령 증가에 따라 점차 증가하는 경향이 보였다. 단위 면적 당 도관요소의 개수는 수령 증가에 따라 점차 감소하는 경향이 있었다. 방사조직 밀도는 수령 증가에 따른 증감의 변화 없이 거의 일정하였다. 방사조직의 개수는 수령 증가에 따라 점차 증가하는 경향이 있었고, 이와 대조적으로 방사조직의 높이는 낮아지는 경향이 나타났다. 방사조직의 높이가 높을수록 단위 면적($mm^2$) 당 방사조직 개수는 감소하고 방사조직의 높이가 낮을수록 방사조직 개수는 증가하는 경향을 보였다. 결론적으로 방사조직 밀도를 제외한 도관요소 및 방사조직 특성들은 밤나무의 성숙재와 미성숙재를 판단하는 지표로 사용될 수 있을 뿐만 아니라 밤나무의 품종별 구분이 가능할 것으로 생각되었다.
부산, 목포 지점의 평균해수면(MSL)과 고극조위, 저극조위 자료의 이상자료 시계열 모델링을 수행하였다. 시계열 모델은 계절성분을 포함하는 SARIMA 모형이며, 일시적인 변화에 해당하는 이상자료(Additive Outlier, AO)와 영구적인 변화를 의미하는 기준고도 변화(Level Shift, LS)를 모델에 포함하였으며, AIC 기준에 의거하여 최적 모델을 선정하였다. 이상자료 모형의 매개변수 추정은 R 프로그램 'tsoutliers' 패키지('tso' 함수)를 이용하였다. 선정 모형을 이용하여 이상자료와 기준고도 변화 진단에 적용한 결과, 부산의 월 단위 고극조위 자료에서 2003, 2012년 발생한 태풍 매미(MAEMI), 산바(SANBA)에 의한 일시적인 수위상승을 65.5, 29.5 cm 정도로 추정하였으며, 목포의 월 단위 평균해수면 자료에서는 1983년의 영산강 하굿둑 건설 사업에 의한 기준고도 변화를 21.2 cm 정도로 추정하였다. 한편 본 연구에서 구성한 모형은 모형의 편향을 유발하는 이상자료의 영향을 포함하며, 모형에 의한 RMS 오차는 연간 자료를 사용한 경우, 부산은 MSL 1.95 cm, 고극조위, 저극조위 각각 5.11 cm, 6.50 cm이며, 목포의 경우에는 큰 조차의 영향으로 MSL 2.01 cm, 고극조위, 저극조위 각각 11.80 cm, 9.14 cm로 부산보다 다소 높게 나타났다.
모든 산업이 ICT 인프라를 기반으로 융합되고 나아가 산업과 문화가 융합되는 스마트융합 환경이 도래함에 따라, ICT 인프라를 시공 및 구축하는 정보통신공사업이 중요하게 평가되고 있다. 이러한 정보통신공사업의 지속적인 성장을 위해서는 기술인력의 공급이 안정적으로 이루어지는 것이 매우 중요하나, 현재까지 이론적으로 체계적인 정보통신공사업 분야의 인력수급차 분석이 수행된 바가 없다. 특히 정부에서도 2014년 12월에 공사업 육성방안 로드맵을 추진하며 중장기 인력수급차 분석에 기반한 인적역량 강화방안을 모색하겠다고 발표하여, 정량적인 인력수급차 분석의 필요성은 더욱 중요해지는 상황이다. 이에 본 연구에서는 정보통신공사업의 인력수급 예측모형을 개발하고, 인력수급차 분석결과를 제시하였다. 분석결과, 2007년도부터 전문대학의 입학자 감소, 구조조정, 학과개편 등의 요인으로 전문대 교육과정에서 배출되는 졸업생이 줄어들어 초과수요상태가 나타나는 것으로 조사되었다. 이에 따라 정보통신공사업 시장의 기술인력 부족현상을 줄이기 위해, 기존인력의 재교육, 정보통신기술인력 양성정책을 지속적으로 유지하고 다양한 정책적 유인을 제공할 필요성이 있는 것으로 분석되었다.
2004년부터 정부는 무분별한 저가입찰을 방지하고, 기술 경쟁에 의한 적정 시장 가격 반영 및 효율적인 계약관련 업무를 추진하는 것을 목적으로 실적공사비 제도를 도입 시행하고 있다. 하지만 실적공사비 제도의 도입이 낙찰단가 하락에 의한 정부의 예산 절감에만 기여할 뿐, 실질적인 시장가격을 반영하고 있지 못하고 있다는 우려의 목소리 또한 꾸준히 제기되고 있는 실정이다. 낙찰단가 하락에 의한 일반건설업체의 비용 부담은 전문건설업체로 전가되며 최종적으로 건설노동자의 피해로 이어질 가능성이 크기에, 실적공사비에 적정 가격을 반영하고 현실화하는 것은 성공적인 실적공사비 제도의 정착에 매우 중요한 요소이다. 따라서 본 연구는 노무비를 중심으로 노무중심공정을 도출하고 이들의 실적공사비단가와 해당 기능공의 시중노임단가를 비교하여 실적공사비의 현실화수준을 파악하고, 시계열분석을 통해 변화를 분석하고 예측하였다. 시장가격이 반영되지 않은 낙찰 단가의 실질적 하락은 노무 환경의 변화를 가속화하고, 임금체불, 업체부도 등 건설근로자의 직접적인 피해로 이어질 수 있기에 향후 본 연구가 현행 실적공사비 제도의 문제점을 해결하고, 개선방안을 수립하기 위한 기초 자료로 활용될 수 있을 것으로 기대된다.
The average ratio of the daily UV-B to total solar (75) irradiance at Busan (35.23$^{\circ}$N, 129.07$^{\circ}$E) in Korea is found as 0.11%. There is also a high exponential relationship between hourly UV-B and total solar irradiance: UV-B=exp (a$\times$(75-b))(R$^2$=0.93). The daily variation of total ozone is compared with the UV-B irradiance at Pohang (36.03$^{\circ}$N, 129.40$^{\circ}$E) in Korea using the Total Ozone Mapping Spectrometer (TOMS) data during the period of May to July in 2005. The total ozone (TO) has been maintained to a decreasing trend since 1979, which leading to a negative correlation with the ground-level UV-B irradiance doting the given period of cloudless day: UV-B=239.23-0.056 TO (R$^2$=0.52). The statistical predictions of daily total ozone are analyzed by using the data of the Brewer spectrophotometer and TOMS in East Asia including the Korean peninsula. The long-term monthly averages of total ozone using the multiplicative seasonal AutoRegressive Integrated Moving Average (ARIMA) model are used to predict the hourly mean UV-B irradiance by interpolating the daily mean total ozone far the predicting period. We also can predict the next day's total ozone by using regression models based on the present day's total ozone by TOMS and the next day's predicted maximum air temperature by the Meteorological Mesoscale Model 5 (MM5). These predicted and observed total ozone amounts are used to input data of the parameterization model (PM) of hourly UV-B irradiance. The PM of UV-B irradiance is based on the main parameters such as cloudiness, solar zenith angle, total ozone, opacity of aerosols, altitude, and surface albedo. The input data for the model requires daily total ozone, hourly amount and type of cloud, visibility and air pressure. To simplify cloud effects in the model, the constant cloud transmittance are used. For example, the correlation coefficient of the PM using these cloud transmissivities is shown high in more than 0.91 for cloudy days in Busan, and the relative mean bias error (RMBE) and the relative root mean square error (RRMSE) are less than 21% and 27%, respectively. In this study, the daily variations of calculated and predicted UV-B irradiance are presented in high correlation coefficients of more than 0.86 at each monitoring site of the Korean peninsula as well as East Asia. The RMBE is within 10% of the mean measured hourly irradiance, and the RRMSE is within 15% for hourly irradiance, respectively. Although errors are present in cloud amounts and total ozone, the results are still acceptable.
우리나라의 도로는 종류별로 관리주체가 서로 다르다. 고속국도는 한국도로공사, 일반국도는 건설교통부, 지방도는 광역자치단체, 시 군도는 기초자치단체에서 건설 관리 및 운영 책임을 맡고 있다. 본 연구에서는 이렇듯 관리주체가 다른 우리나라의 도로에서 발생하고 있는 교통사고발생 추세를 도로종류별로 분석하는데 목적이 있다. 이를 위해 과거로부터 축적된 도로종류별 교통사고건수, 사망자수, 부상자수의 자료를 기반으로 사고위험을 단순건수, 도로연장 당 건수, 그리고 대 km당 건수로 비교하였다. 그 결과 단순 건수에 의한 비교에서는 도시부 도로가 전 부문에서 가장 위험하고 고속국도는 전 부문에서 가장 안전한 것으로 분석되었다. 그러나 1km당 발생건수는 일반국도가 가장 위험하고 지방도가 가장 안전한 것으로 분석되었다. 교통사고 발생률을 가장 객관적으로 비교할 수 있는 지표인 10만 차량 대 km당 비교에서는 일반국도가 가장 위험하고, 고속국도가 상대적으로 안전한 것으로 분석되었다. 한편, 도로종류별 사망자수 추세를 설명하는 시계열 분석모형을 개발한 결과 고속국도, 지방도, 도시부도로의 경우 AR(1)모형이 추세를 잘 설명 할 수 있는 것으로 분석되었고, 일반국도의 경우 ARIMA(2, 3, 0)모형이 추세를 설명할 수 있는 것으로 분석되었다. 이러한 모형은 장래 교통안전계획의 목표치를 수립하거나 평가하는데 근거자료로 활용될 수 있을 것으로 보인다.
시계열자료의 분해능력이 뛰어난 wavelet 변환을 사용하여 물소비특성을 분석하였다. Wavelet 변환의 기저함수로는 물수요량의 경우 Coiflets5 함수, 기온측정치의 경우 Coiflets3 함수를 사용하였으며 해석결과 212 scale에서 목표된 장기간에 걸친 변화추이는 hyperbolic tangent 함수의 형태로 전기간에 걸처 꾸준한 증가세를 보였다. 또한 절기혹은 경기주기와 밀접한 관련이 있을 것으로 생각되는 추가수요가 6월과 12월말을 정점으로 발생하였으며 이 추가 수요량은 하절기의 경우 $1,700\;\textrm{cm}^3/hr$, 동절기의 경우 $500\;\textrm{cm}^3/hr$ 정도인 것으로 관측되었다. 정수장 생산량 시계열자료에 내재한 주기성분은 주기가 각각 3.13day, 33.33 hr, 23.98hr와 12hr인 것으로 규명되었다. 진폭은 주기가 23,98hr인 성분이 가장 큰 것으로 밝혀졌으며 2i[i = 1,2,…12] scale에서 목도된 단주기성분들은 Gaussian PDF를 따르는 것이 확인되엇다. 잔차성분의 상호독립성, 자색파여부와 FPE의 최소화를 기준으로 할 경우 물수요량의 최적예측모형으로는 기온을 입력자료로한 다원 AR[32, 16, 23]과 다원 ARM [20, 16, 10, 23]인 것으로 판단된다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권4호
/
pp.2060-2077
/
2019
Recently, mobile healthcare services have attracted significant attention because of the emerging development and supply of diverse wearable devices. Smartwatches and health bands are the most common type of mobile-based wearable devices and their market size is increasing considerably. However, simple value comparisons based on accumulated data have revealed certain problems, such as the standardized nature of health management and the lack of personalized health management service models. The convergence of information technology (IT) and biotechnology (BT) has shifted the medical paradigm from continuous health management and disease prevention to the development of a system that can be used to provide ground-based medical services regardless of the user's location. Moreover, the IT-BT convergence has necessitated the development of lifestyle improvement models and services that utilize big data analysis and machine learning to provide mobile healthcare-based personal health management and disease prevention information. Users' health data, which are specific as they change over time, are collected by different means according to the users' lifestyle and surrounding circumstances. In this paper, we propose a prediction model of user physical activity that uses data characteristics-based long short-term memory (DC-LSTM) recurrent neural networks (RNNs). To provide personalized services, the characteristics and surrounding circumstances of data collectable from mobile host devices were considered in the selection of variables for the model. The data characteristics considered were ease of collection, which represents whether or not variables are collectable, and frequency of occurrence, which represents whether or not changes made to input values constitute significant variables in terms of activity. The variables selected for providing personalized services were activity, weather, temperature, mean daily temperature, humidity, UV, fine dust, asthma and lung disease probability index, skin disease probability index, cadence, travel distance, mean heart rate, and sleep hours. The selected variables were classified according to the data characteristics. To predict activity, an LSTM RNN was built that uses the classified variables as input data and learns the dynamic characteristics of time series data. LSTM RNNs resolve the vanishing gradient problem that occurs in existing RNNs. They are classified into three different types according to data characteristics and constructed through connections among the LSTMs. The constructed neural network learns training data and predicts user activity. To evaluate the proposed model, the root mean square error (RMSE) was used in the performance evaluation of the user physical activity prediction method for which an autoregressive integrated moving average (ARIMA) model, a convolutional neural network (CNN), and an RNN were used. The results show that the proposed DC-LSTM RNN method yields an excellent mean RMSE value of 0.616. The proposed method is used for predicting significant activity considering the surrounding circumstances and user status utilizing the existing standardized activity prediction services. It can also be used to predict user physical activity and provide personalized healthcare based on the data collectable from mobile host devices.
이 연구의 목적은 시계열 분석을 통하여 최근 10년(2010 - 2019)간의 광주광역시 출생아 수 추이와 전남대학교 치과병원 소아치과 내원 환자 수 추이를 분석하고 향후 1년을 예측하는 것이다. 출생아 수는 월별 반복과정을 보이면서 비안정적으로 하락하는 추세를 보였으며 1월에 출생아 수가 가장 많고 12월에 가장 적은 경향을 보였다. 2020년의 출생아 수가 평균 682명(595 - 782명, 95% CI)으로 예측되었으며 실제 출생아 수는 평균 610명이었다. 소아치과 내원 환자 수는 월별 반복과정을 보이면서 비교적 안정되어 있으며 8월에 내원 환자 수가 가장 많고 6월에 가장 적은 경향을 보였다. 2020년의 내원 환자 수가 평균 603명(505 - 701명, 95% CI)으로 예측되었으며 실제 내원 환자 수의 평균은 587명이었다. 출생아 수의 기록적인 감소에도 불구하고 소아치과에 내원한 환자의 수는 다소 증가할 것으로 예측되었다. COVID-19이라는 특수한 상황으로 인하여 실제 출생아 수와 내원 환자수가 예측치보다 다소 낮게 확인되었으나 예측 범위 내에 포함됨을 확인하였다. 시계열 분석 모형은 과거를 이해하고 미래를 예측하는 유용한 방법으로 소아치과 영역에서 저출산 시대를 대비하기 위한 기초 도구로써 유용하게 활용될 수 있을 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.