• 제목/요약/키워드: arima

검색결과 493건 처리시간 0.019초

해운경기의 예측: 2013년 (A Forecast of Shipping Business during the Year of 2013)

  • 모수원
    • 한국항만경제학회지
    • /
    • 제29권1호
    • /
    • pp.67-76
    • /
    • 2013
  • 해운경기와 밀접한 관계를 갖는 세계 경기가 유럽재정위기와 같은 일련의 사건으로 침체국면에서 벗어나지 못하고 있어 장기적인 해운시황에 대한 우려가 커지고 있으며, BDI 건화물선 종합운임지수가 1000포인트에도 도달하지 못해 해운기업의 어려움을 가중시키고 있다. 본고는 해운경기의 불황탈피가 2013년에 가능한가를 파악하기 위해 BDI를 예측하는데 목적을 둔다. 해상운임에 영향을 미치는 변수들로 구성된 다변량모형 대신 BDI로만 구성된 단일변량모형인 자기회귀-이동평균모형과 장기순환과정을 보여주는 Hodrick-Prescott 필터 기법을 이용하여 2013년의 BDI를 예측한다. 3개의 ARIMA모형과 2개의 개입-ARIMA 모형을 이용하여 2013년에도 지속적으로 BDI가 하락하는 760과 670사이에서 움직인다는 것을 보인다. HP기법을 통한 예측은 750에서 556사이의 변동을 예상하여 ARIMA모형보다 해운경기를 더 비관적이라는 것도 밝힌다. 또한 5개의 ARIMA모형의 예측오류가 RW모형보다 낮을 뿐만 아니라 그 크기가 대단히 작아 예측치가 크게 빗나갈 가능성이 낮다는 것도 보인다.

An Empirical Study on the Comparison of LSTM and ARIMA Forecasts using Stock Closing Prices

  • Gui Yeol Ryu
    • International journal of advanced smart convergence
    • /
    • 제12권1호
    • /
    • pp.18-30
    • /
    • 2023
  • We compared empirically the forecast accuracies of the LSTM model, and the ARIMA model. ARIMA model used auto.arima function. Data used in the model is 100 days. We compared with the forecast results for 50 days. We collected the stock closing prices of the top 4 companies by market capitalization in Korea such as "Samsung Electronics", and "LG Energy", "SK Hynix", "Samsung Bio". The collection period is from June 17, 2022, to January 20, 2023. The paired t-test is used to compare the accuracy of forecasts by the two methods because conditions are same. The null hypothesis that the accuracy of the two methods for the four stock closing prices were the same were rejected at the significance level of 5%. Graphs and boxplots confirmed the results of the hypothesis tests. The accuracies of ARIMA are higher than those of LSTM for four cases. For closing stock price of Samsung Electronics, the mean difference of error between ARIMA and LSTM is -370.11, which is 0.618% of the average of the closing stock price. For closing stock price of LG Energy, the mean difference is -4143.298 which is 0.809% of the average of the closing stock price. For closing stock price of SK Hynix, the mean difference is -830.7269 which is 1.00% of the average of the closing stock price. For closing stock price of Samsung Bio, the mean difference is -4143.298 which is 0.809% of the average of the closing stock price. The auto.arima function was used to find the ARIMA model, but other methods are worth considering in future studies. And more efforts are needed to find parameters that provide an optimal model in LSTM.

결합예측 방법을 이용한 인터넷 트래픽 수요 예측 연구 (A Study on Internet Traffic Forecasting by Combined Forecasts)

  • 김삼용
    • 응용통계연구
    • /
    • 제28권6호
    • /
    • pp.1235-1243
    • /
    • 2015
  • 최근 들어 ICT 분야의 발달에 따라 데이터 사용량의 급격한 증가로 인터넷 트래픽 사용량 예측은 중요성은 강조되고 있다. 이러한 예측치를 적절한 트래픽 관리와 제어를 위한 계획 수립에 도움을 준다. 본 논문은, 5분 단위의 인터넷 트래픽 자료를 이용하여 결합 예측 모형을 제안하고자 한다. 이에 대하여 시계열의 대표적인 3개 모형인 Seasonal ARIMA, Fractional ARIMA(FARIMA), Taylor의 수정된 Holt-Winters 모형을 적용하였다. 모형 간 결합 예측 방법으로 예측치 간의 SA(Simple Average) 결합 예측 방법과 OLS(Ordinary Least Square)를 이용한 결합방법, ERLS(Equality Restricted Least Squares)를 이용한 결합 예측 방법, Armstrong(2001)이 제안한 MSE 기반 결합 예측 방법을 사용한다. 이에 따른 결과로서 3시간에서의 예측은 Seasonal ARIMA가 선택된 반면, 6시간 이후 예측에서는 결합 예측 방법이 좋은 예측 성능을 보여준다.

ARIMA AR(1) 모형을 이용한 소프트웨어 미래 고장 시간 예측에 관한 연구 (The Study for Software Future Forecasting Failure Time Using ARIMA AR(1))

  • 김희철;신현철
    • 융합보안논문지
    • /
    • 제8권2호
    • /
    • pp.35-40
    • /
    • 2008
  • 소트프웨어 고장 시간은 테스팅 시간과 관계없이 일정하거나, 단조 증가 혹은 단조 감소 추세를 가지고 있다. 이러한 소프트웨어 신뢰모형들을 분석하기 위한 자료척도로 자료에 대한 추세 검정이 개발되어 있다. 추세 분석에는 산술평균 검정과 라플라스 추세 검정 등이 있다. 추세분석들은 전체적인 자료의 개요의 정보만 제공한다. 본 논문에서는 고장시간을 측정하다가 시간절단이 될 경우에 미래의 고장 시간 예측에 관하여 연구되었다. 고장 시간 예측에 사용된 고장시간자료는 소프트웨어 고장 시간 분포에 널리 사용되는 와이블 분포에서 형상모수가 1이고 척도모수가 0.5를 가진 난수를 발생된 모의 자료를 이용 하였다. 이 자료를 이용하여 시계열 분석에 이용되는 ARIMA 모형 중에서 AR(1) 모형과 모의실험을 통한 예측 방법을 제안하였다. 이 방법에서 ARIMA 모형을 이용한 예측방법이 효율적임을 입증 하였다.

  • PDF

계절 ARIMA 모형을 이용한 제주공항 여객 수요예측 및 효율적 운영에 관한 연구 (A Study on the Demand Forecasting and Efficient Operation of Jeju National Airport using seasonal ARIMA model)

  • 김경범;황경수
    • 한국산학기술학회논문지
    • /
    • 제13권8호
    • /
    • pp.3381-3388
    • /
    • 2012
  • 본 연구는 단변량 시계열분석 중에서 계절 ARIMA 모형을 이용하여 제주공항의 여객수요 예측과 그에 따른 효율적인 운영관리 방안을 제시하고자 하였다. 연구의 목적을 달성하기 위하여 사용된 시계열데이터는 2003년 1월부터 2011년 12월까지의 월별데이터이며, 관찰 수는 108개이다. 분석결과, 최적모형으로 계절 ARIMA(0,1,2)(0,1,1)12 모형이 선정되었으며, 제주공항의 여객수는 지속적으로 증가할 것으로 나타나고 있으며, 2013년에는 1년에 2천만명을 넘어설 것으로 예측되었다.

ARIMA 모형을 이용한 한육우 사육두수 추정 (Estimation of the Number of Korean Cattle Using ARIMA Model)

  • 전상곤;박한울
    • 농업생명과학연구
    • /
    • 제45권5호
    • /
    • pp.115-126
    • /
    • 2011
  • 이 논문은 국내 한육우 사육두수를 시계열 모형인 ARIMA 모형을 이용하여 추정하였다. 소의 생리학적 특성을 반영하기 위하여 한육우 사육두수를 총 여섯 개의 범주(4개의 도축률과 2개의 출생률)로 나누었다. 이 여섯 가지 범주에 대해 ARIMA 모형을 적용하여 Box-Jenkins 절차에 따라 그 값들을 추정하고 예측하였다. 큰암소도축률과 큰수소도축률은 단위근을 갖는 불안정시계열로 나타나 차분하여 안정화시키고 나머지 4개의 변수들은 안정시계열로 나타나 그대로 모형의 식별, 추정 그리고 예측에 사용하였다. 분석결과, 한육우 사육두수는 2012년을 최고점으로 점점 감소하다가 2018년을 최저점으로 다시 증가할 것으로 분석되었다.

계절 ARIMA 모형을 이용한 국립공원 탐방수요 예측 (A Study on Forecasting Visit Demands of Korea National Park Using Seasonal ARIMA Model)

  • 심규원;권헌교
    • 한국산림과학회지
    • /
    • 제100권1호
    • /
    • pp.124-130
    • /
    • 2011
  • 본 연구는 국립공원 탐방 수요예측에 적합한 모형을 추정하고, 계절 ARIMA Model을 이용하여 국립공원 탐방수요를 예측하였다. 분석 자료는 2003년 1월부터 2010년 12월까지 우리나라 18개 국립공원의 월별 탐방객 수 자료를 이용하였다. 분석결과 $ARIMA(1,0,0)(1,1,0)_{12}$모형이 국립공원 탐방수요를 예측하는데 적합한 모형으로 선정되었으며, MAPE를 이용한 사후평가 결과에서도 모형의 정확도가 높은 것으로 나타났다. 따라서 본 연구 결과는 국립공원 탐방수요 예측기법의 신뢰성 및 타당성 향상과 함께 국립공원 관리전략 수립에 기여할 것으로 판단된다.

ARIMA 시계열 모형을 이용한 제주도 인바운드 항공여객 증가율 예측 연구 - 제주지역 골프장 내장객 현황 데이터를 활용하여 - (Estimating the Growth Rate of Inbound Air Travelers to Jeju with ARIMA Time-Series - Using Golf Course Visitor Data -)

  • 손건희;김기웅;신리현;이수미
    • 한국항공운항학회지
    • /
    • 제31권1호
    • /
    • pp.92-98
    • /
    • 2023
  • This paper used the golf course visitors' data in Jeju region to forecast the growth of inbound air traveler to Jeju. This is because the golf course visitors were proven to bring the highest economic and production inducement effect to the Jeju region. Based on such a data, this paper forecast the short-term growth rate of inbound air traveler using ARIMA to the Jeju until December 2025. According to ARIMA (0,1,0) (0,1,1) model, it was analyzed that the monthly number of golf course visitors to Jeju has been increasing steadily even since COVID-19 pandemic and the number is expected to grow until the end of 2025. Applying the same parameters of ARIMA (0,1,0) (0,1,1) to inbound air travel data, it was found the growth rate of inbound air travelers would be higher than the growth rate of 2019 shortly without moderate variation even though the monthly number of inbound travelers to Jeju had been dropped during COVID-19 pandemic.

ARIMA 모델을 이용한 수막재배지역 지하수위 시계열 분석 및 미래추세 예측 (Time-series Analysis and Prediction of Future Trends of Groundwater Level in Water Curtain Cultivation Areas Using the ARIMA Model)

  • 백미경;김상민
    • 한국농공학회논문집
    • /
    • 제65권2호
    • /
    • pp.1-11
    • /
    • 2023
  • This study analyzed the impact of greenhouse cultivation area and groundwater level changes due to the water curtain cultivation in the greenhouse complexes. The groundwater observation data in the Miryang study area were used and classified into greenhouse and field cultivation areas to compare the groundwater impact of water curtain cultivation in the greenhouse complex. We identified the characteristics of the groundwater time series data by the terrain of the study area and selected the optimal model through time series analysis. We analyzed the time series data for each terrain's two representative groundwater observation wells. The Seasonal ARIMA model was chosen as the optimal model for riverside well, and for plain and mountain well, the ARIMA model and Seasonal ARIMA model were selected as the optimal model. A suitable prediction model is not limited to one model due to a change in a groundwater level fluctuation pattern caused by a surrounding environment change but may change over time. Therefore, it is necessary to periodically check and revise the optimal model rather than continuously applying one selected ARIMA model. Groundwater forecasting results through time series analysis can be used for sustainable groundwater resource management.

산업생산통계의 계절변동조정방법

  • 전백근
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.139-144
    • /
    • 2002
  • 계절변동조정방법인 X-12-ARIMA방법을 이용할 때에는 우리 실정에 적합한 옵션을 선택하고, 우리만에 특수한 명절과 조업일수영향을 사전에 조정해야한다. 본고에서는 명절과 조업일수영향을 측정하는 모형을 설정하고, 이것으로 추정된 사전조정요인을 원계열에서 제거했을 때 계절변동 및 계절변동조정계열의 안정성이 향상되었는가를 진단하고, 분류별로 적합한 X-12-ARIMA방법의 옵션을 제안하였다.

  • PDF