• Title/Summary/Keyword: areal sampling

Search Result 15, Processing Time 0.021 seconds

Validation of 3D discrete fracture network model focusing on areal sampling methods-a case study on the powerhouse cavern of Rudbar Lorestan pumped storage power plant, Iran

  • Bandpey, Abbas Kamali;Shahriar, Kourush;Sharifzadeh, Mostafa;Marefvand, Parviz
    • Geomechanics and Engineering
    • /
    • v.16 no.1
    • /
    • pp.21-34
    • /
    • 2018
  • Discontinuities considerably affect the mechanical and hydraulic properties of rock mass. These properties of the rock mass are influenced by the geometry of the discontinuities to a great extent. This paper aims to render an account of the geometrical parameters of several discontinuity sets related to the surrounding rock mass of Rudbar Lorestan Pumped Storage Power Plant powerhouse cavern making use of the linear and areal (circular and rectangular) sampling methods. Taking into consideration quite a large quantity of scanline and the window samplings used in this research, it was realized that the areal sampling methods are more time consuming and cost-effective than the linear methods. Having corrected the biases of the geometrical properties of the discontinuities, density (areal and volumetric) as well as the linear, areal and volumetric intensity accompanied by the other properties related to four sets of discontinuities were computed. There is an acceptable difference among the mean trace lengths measured using two linear and areal methods for the two joint sets. A 3D discrete fracture network generation code (3DFAM) has been developed to model the fracture network based on the mapped data. The code has been validated on the basis of numerous geometrical characteristics computed by use of the linear, areal sampling methods and volumetric method. Results of the linear sampling method have significant variations. So, the areal and volumetric methods are more efficient than the linear method and they are more appropriate for validation of 3D DFN (Discrete Fracture Network) codes.

Sampling Error of Areal Average Rainfall due to Radar Partial Coverage (부분적 레이더 정보에 따른 면적평균강우의 관측오차)

  • Yoo, Chul-Sang;Kim, Byoung-Soo;Kim, Kyoung-Jun;Yoon, Jung-Soo
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.97-100
    • /
    • 2008
  • This study estimated the error involved in the areal average rainfall derived incomplete radar information due to radar partial coverage of a basin or sub-basin. This study considers the Han River Basin as an application example for the rainfall observation using the Ganghwa rain radar. Among the total of 24 mid-sized sub-basins of the Han River Basin evaluated in this study, only five sub-basins are fully covered by the radar and three are totally uncovered. Remaining 16 sub-basins are partially covered by the radar leading incomplete radar information available. When only partial radar information is available, the sampling error decreases proportional to the size of the radar coverage, which also varies depending on the number of clusters. It is general that smaller sampling error can be expected when the number of clusters increases if the total area coverage remains the same. This study estimated the sampling error of the areal average rainfall of partially-covered mid-sized sub-basins of the Han River Basin, and the results show that the sampling error could be at least several % to maximum tens % depending on the relative coverage area.

  • PDF

Sampling Error of Areal Average Rainfall due to Radar Partial Coverage (부분적 레이더 정보에 따른 면적평균강우의 관측오차)

  • Yoo, Chul-Sang;Ha, Eun-Ho;Kim, Byoung-Soo;Kim, Kyoung-Jun;Choi, Jeong-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.5
    • /
    • pp.545-558
    • /
    • 2008
  • This study estimated the error involved in the areal average rainfall derived from incomplete radar information due to radar partial coverage of a basin or sub-basin. This study considers the Han-River Basin as an application example for the rainfall observation using the Ganghwa rain radar. Among the total of 20 mid-sized sub-basins of the Han-River Basin evaluated in this study, only five sub-basins are fully covered by the radar and three are totally uncovered. Remaining 12 sub-basins are partially covered by the radar to result in incomplete radar information available. When only partial radar information is available, the sampling error decreases proportional to the size of the radar coverage, which also varies depending on the number of clusters. Conditioned that the total area coverage remains the same, the sampling error decreases as the number of clusters increases. This study estimated the sampling error of the areal average rainfall of partially-covered mid-sized sub-basins of the Han- River Basin, and the results show that the sampling error could be at least several % to maximum tens % depending on the relative coverage area.

A Random Sampling Method in Estimating the Mean Areal Precipitation Using Kriging

  • Lee, Sang-Il
    • Korean Journal of Hydrosciences
    • /
    • v.5
    • /
    • pp.45-55
    • /
    • 1994
  • A new method to estimate the mean areal precipitation using kriging is developed. Urlike the conventional approach, points for double and quadruple numerical integrations in the kriging equation are selected randomly, given the boundary of area of interest. This feature eliminates the conventional approach's necessity of dividing the area into subareas and calculating the center of each subarea, which in turn makes the developed method more powerful in the case of complex boundaries. The algorithm to select random points within an arbitrary boundary, based on the theory of complex variables, is described. The results of Monte Carlo simulation showed that the error associated with estimation using randomly selected points is inversely proportional to the square root of the number of sampling points.

  • PDF

A Random Sampling Method in Estimating the Mean Areal Precipitation Using Kriging (임의 추출방식 크리깅을 이용한 평균면적우량의 추정)

  • 이상일
    • Water for future
    • /
    • v.26 no.2
    • /
    • pp.79-87
    • /
    • 1993
  • A new method to estimate the mean areal precipitation using kriging is developed. Unlike the conventional approach, points for double and quadruple numerical integrations in the kriging equation are selected randomly, given the boundary of area of interest. This feature eliminates the conventional approach's necessity of dividing the area into subareas and calculating the center of each subarea, which in turn makes the developed method more powerful in the case of complex boundaries. The algorithm to select random points within an arbitrary boundary, based on the theory of complex variables, is described. The results of Monte Carlo simulation showed that the error associated with estimation using randomly selected points is inversely proportional to the square root of the number of sampling points.

  • PDF

Sampling Bias of Discontinuity Orientation Measurements for Rock Slope Design in Linear Sampling Technique : A Case Study of Rock Slopes in Western North Carolina (선형 측정 기법에 의해 발생하는 불연속면 방향성의 왜곡 : 서부 North Carolina의 암반 사면에서의 예)

  • 박혁진
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.145-155
    • /
    • 2000
  • Orientation data of discontinuities are of paramount importance for rock slope stability studies because they control the possibility of unstable conditions or excessive deformation. Most orientation data are collected by using linear sampling techniques, such as borehole fracture mapping and the detailed scanline method (outcrop mapping). However, these data, acquired by the above linear sampling techniques, are subjected to bias, owing to the orientation of the sampling line. Even though a weighting factor is applied to orientation data in order to reduce this bias, the bias will not be significantly reduced when certain sampling orientations are involved. That is, if the linear sampling orientation nearly parallels the discontinuity orientation, most discontinuities orientation data which are parallel to sampling line will be excluded from the survey result. This phenomenon can cause serious misinterpretation of discontinuity orientation data because critical information is omitted. In the case study, orientation data collected by using the borehole fracture mapping method (vertical scanline) were compared to those based on orientation data from the detailed scanline method (horizontal scanline). Differences in results for the two procedures revealed a concern that a representative orientation of discontinuities was not accomplished. Equal-area, polar stereo nets were used to determine the distribution of dip angles and to compare the data distribution fur the borehole method versus those for the scanline method.

  • PDF

A Study on Building Identification from the Three-dimensional Point Cloud by using Monte Carlo Integration Method (몬테카를로 적분을 통한 3차원 점군의 건물 식별기법 연구)

  • YI, Chaeyeon;AN, Seung-Man
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.16-41
    • /
    • 2020
  • Geospatial input setting to represent the reality of spatial distribution or quantitative property within model has become a major interest in earth system simulation. Many studies showed the variation of grid resolution could lead to drastic changes of spatial model results because of insufficient surface property estimations. Hence, in this paper, the authors proposed Monte Carlo Integration (MCI) to apply spatial probability (SP) in a spatial-sampling framework using a three-dimensional point cloud (3DPC) to keep the optimized spatial distribution and area/volume property of buildings in urban area. Three different decision rule based building identification results were compared : SP threshold, cell size, and 3DPC density. Results shows the identified building area property tend to increase according to the spatial sampling grid area enlargement. Hence, areal building property manipulation in the sampling frameworks by using decision rules is strongly recommended to increase reliability of geospatial modeling and analysis results. Proposed method will support the modeling needs to keep quantitative building properties in both finer and coarser grids.

An Evaluation of a Dasymetric Surface Model for Spatial Disaggregation of Zonal Population data (구역단위 인구자료의 공간적 세분화를 위한 밀도 구분적 표면모델에 대한 평가)

  • Jun, Byong-Woon
    • Journal of the Korean association of regional geographers
    • /
    • v.12 no.5
    • /
    • pp.614-630
    • /
    • 2006
  • Improved estimates of populations at risk for quick and effective response to natural and man-made disasters require spatial disaggregation of zonal population data because of the spatial mismatch problem in areal units between census and impact zones. This paper implements a dasymetric surface model to facilitate spatial disaggregation of the population of a census block group into populations associated with each constituent pixel and evaluates the performance of the surface-based spatial disaggregation model visually and statistically. The surface-based spatial disaggregation model employed geographic information systems (GIS) to enable dasymetric interpolation to be guided by satellite-derived land use and land cover data as additional information about the geographic distributor of population. In the spatial disaggregation, percent cover based empirical sampling and areal weighting techniques were used to objectively determine dasymetric weights for each grid cell. The dasymetric population surface for the Atlanta metropolitan area was generated by the surface-based spatial disaggregation model. The accuracy of the dasymetric population surface was tested on census counts using the root mean square error (RMSE) and an adjusted RMSE. The errors related to each census track and block group were also visualized by percent error maps. Results indicate that the dasymetric population surface provides high-precision estimates of populations as well as the detailed spatial distribution of population within census block groups. The results also demonstrate that the population surface largely tends to overestimate or underestimate population for both the rural and forested and the urban core areas.

  • PDF

Use of Unmanned Aerial Vehicle for Forecasting Pine Wood Nematode in Boundary Area: A Case Study of Sejong Metropolitan Autonomous City (무인항공기를 이용한 소나무재선충병 선단지 예찰 기법: 세종특별자치시를 중심으로)

  • Kim, Myeong-Jun;Bang, Hong-Seok;Lee, Joon-Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.1
    • /
    • pp.100-109
    • /
    • 2017
  • This study was conducted for preliminary survey and management support for Pine Wood Nematode (PWN) suppression. We took areal photographs of 6 areas for a total of 2,284 ha during 2 weeks period from 15/02/2016, and produced 6 ortho-images with a high resolution of 12 cm GSD (Ground Sample Distance). Initially we classified 423 trees suspected for PWN infection based on the ortho-images. However, low accuracy was observed due to the problems of seasonal characteristics of aerial photographing and variation of forest stands. Therefore, we narrowed down 231 trees out of the 423 trees based on the initial classification, snap photos, and flight information; produced thematic maps; conducted field survey using GNSS; and detected 23 trees for PWN infection that was confirmed by ground sampling and laboratory analysis. The infected trees consisted of 14 broad-leaf trees, 5 pine trees (2 Pinus rigida), and 4 other conifers, showing PWN infection occurred regardless of tree species. It took 6 days for 2.3 men from to start taking areal photos using UAV (Unmanned Aerial Vehicle) to finish detecting PNW (Pine Wood Nematode) infected tress for over 2,200 ha, indicating relatively high efficacy.

Studies on the Some Hydrological Quantities of Principal Locations in the Basin of Geum River(I) (금강유역(錦江流域) 주요지점(主要地点)의 제(諸) 수문량(水文量)에 관(關)한 연구(硏究)(I))

  • Ahn, Byoung Gi;Cho, Seung Seup
    • Korean Journal of Agricultural Science
    • /
    • v.2 no.1
    • /
    • pp.281-300
    • /
    • 1975
  • The precipitation data and water level data in twenty-four sampling places, to investigate same hydrological quantities along the basin of Geum River, have been analyzed, and the findings for the first report are summarized as follows. 1. The mean annual precipitation in the basin of Geum River is of 1203mm, and the areal weight of areal rainfall by Thiessen's method shows as Table 1. 2. The areas where have maximum annual precipitation of 1501 to 2000mm, are seventeen placed among twentyfour gauging stations, and it is founded to be the highest rate with 71 percents. The precipitation of below 1500mm is measured in the other three statinons, and that of above 2001mm in four stations, too. 3. The areas where have maximum rainfall of 201 to 300mm within a day, are fifteen places, and that comes in the highest rate of distribution with 63 percents. 4. As to distribution of the places with maximum rainfall of below and above 300mm within two days, it shows respectively 50 percents. 5. The areas where have maximum rainfall of 301 to 400mm within three days, are fifteen places, and it is the highest rate of distribution with 63 percents. 6. The fourteen places have maximum rainfall of 401 to 600mm within a continuous day, it is the highest rate of distribution with 58 percents. 7. Table 5 shows probable maximum rainfall within a day, and it does the most rainfall a long the upper stream of Daecheong dam site around Muju, and the next shows in the areas around Ganggyeung, Gongju and Buyeu. 8. During irrigation period on paddy corp, for 100 days from early ten days in June to early ten days in September the areas where have rainfall of 601 to 800mm are sixteen places, and it is the highest rate of distribution with 76 percents, as Table 6 9. The areas where have effective rainfall of 501 to 600mm, are fifteen places, and it is the highest rate of distribution with 71 percents. Thirteen places have the effective ratio of 66 to 75 percents, and it means 62 percents of distribution, and the next, 76 to 85 percents in the seven places, and it comes 33 percents. 10. The areas where have probable effective rainfall of 401 to 500mm, are fourteen places, which is about 100mm less than mean effective rainfall in each area, and that comes 67 percents of distribution. 11. A particular year can not be appointed as once -in-10 year drought in the same year as a whole in the basin of Geum River. 12. The basin of Geum River, s/S being 0.53 to 0.74, has relatively proper conditions in the aspect of water resources.

  • PDF