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A Random Sampling Method in Estimating
the Mean Areal Precipitation Using Kriging

L i
LEE Sang-II*

Abstract[ ] A new method to estimate the mean areal precipitation using kriging is developed. Unlike the con-
ventional approach, points for double and quadruple numerical integrations in the kriging equation are selected
randomly, given the boundary of area of interest. This feature eliminates the conventional approach’s necessity of
dividing the area into subareas and calculating the center of each subarea, which in turn makes the developed
method more powerful in the case of complex boundaries. The algorithm to select random points within an arbi-
trary boundary, based on the theory of complex variables, is described. The results of Monte Carlo simulation
showed that the error associated with estimation using randomly selected points is inversely proportional to the
square root of the number of sampling points.
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1. Introduction

The mean areal precipitation is defined as
1
Z4 ::mf,4z(x,y) dxdy (L

Where z(x, y) is a function defining the precipita-
tion over the area of interest A and z, is the mean
areal precipitation. Since z(x, y), a continuous func-
tion, is practically impossible to obtain, the usual pro-
cedure to evaluate equation (1) is to estimate the

spatial average using point rainfall measurements at
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different locations (% y1), (Xz ¥2), *, (X ¥a)-
Various techniques have been developed, depending
on how to give weights to measurements taken at dif-
ferent locations. Readers are referred to works by
Whitmore et al. (1961), Singh and Birsoy (1986),
and Yoon et al. (1991) for general description and
comparison of techniques reported in the literature.
Kriging method [Matheron (1971) ; Rodriguez —
Iturbe and Mejia (1974) ; Bastin et al. (1984)] has
advantages over other methods In that data are
analysed in a systematic and objective way. Kriging

also gives estimation error variance as well as estima-
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tion itself, which makes the method useful particular-
ly in the design of monitoring networks and of sam-
pling strategies.

In conventional applications of kriging to the prob-
lems of mean areal precipitation, the area of interest
is discretized in a uniform fashion : The domain is
subdivided into N elements (typically squares), and
the coordinates of the center of each element are
read for the calculation of the average rainfall esti-
mate and the estimation error. The problems in this
approach are as follows : 1) When the area of analy-
sis is Irregular in shape, discretization is not easy. 2)
For different discretization either in numbers of the
element or in shape, the coordinates of the center of
each element must be read again, which is a time —
consuming and laborious process.

In this paper, we present a new methodology for
the calculation of mean areal precipitation. It is a
kriging method based on the random sampling tech-
nique which requires only the coordinates of the
boundary of study area. No discretization of the area,
and thus the coordinates of the center of each ele-
ment are required. Therefore, with the developed
methodology, it is easy to automate the estimation
procedure. The subject of estimation accuracy is dis-

cussed In the paper as well.

2. Estimation of Spatial
Averages Using Kriging

Estimation is a procedure which uses data to infer
the value of unknown quantity. Kriging may be de-
fined as a linear minimum - variance unbiased esti-
mation procedure. In it, the estimate of the unknown
quantity is expressed as linear combinations of the

measurements, 1. .,
N n
z2:= 3 Az(x) (2)
=1

where 2, is the estimate of the mean areal precipi-
tation, A, is the weighting coefficient, and z(x,) is the

measurement at location x,. This way, the problem is

reduced to selection of a set of coefficients A, A,
The difference between the estimate z,and the
actual value z, 1s the estimation error

. n 1

2172|:i§]A, z(x) ~'—ﬂf\z(x)dx (3)

|
It 1s desired to select coefficients so that the estima-
tor error becomes zero for any value of the mean m
(unbiasedness), and the variance or mean square esti-
mation error becomes minimum (mMinimum — vari-
ance).

Unbiasedness requires that

A n 1
Elzi-z4]= 2 A m— 5+ [.mdx
i=1 | Al

n
=X Am-m=0 (4)
i=1

For this condition to hold for any value of m, it 1s

required that

n
ZA-1=0 (5)
i=1

Now, the variance of the estmation error if a covar-

1ance function can be defined is

) n
El(z-z)]=E [ 5 Ale(z)-m)- ﬁ
=1

nn
Ii(a(x) ~m)dx)’] = $ 344 Rlx-x

1=1j=

o1

1)*2_21AWI4 R(x,—u)du+
j=

TAT? /{ | 7Jo A R(u-v)dudv (6)

Note that R is the covariance function defined as
E [(2(x,) —m(x) (2 x.) —m(x,))] = R(2, x:) (7)

A basic assumption behind the derivation is that
mean value is constant and the covariance function is
a function not of the spatial coordinates of the two
points but of the coordinates of the separation, 1. e.,

stationarity of the random function z(x) :



El«x)]=m
(8)
E[(z(x) mN2(x.)-m)] =R(x,-x:)
Integral notations in equation (6) are
foR(x,~u)du=[[R(x;—u; x,-u) du, du,  (9)

and -

[+ [+ R(u-v)dudv
=[[[]R( —v,, u;~v;) du, du, dv, dv, (10)

Thus the problem of best (minimum mean—
squared error) unbiased estimation of the A coeffi-
cients may be reduced to the constrained optimization
problem : Select the values of A, ---, 4, which mini-
mizes equation (6) subject to the constraint (5).

Using Lagrange multipliers, the necessary condi-
tions for the minimization are given by the linear

“kriging system” equations !
n 1 :
S AR(x-x)+yv=-15JsR(x~u)dy, i=1,
iZ1 | Al
ey m (11)
n
2 A=1 (12)

—where v is the Lagrange multiplier. Once coeffi-
cients A, -, A, are obtained, the mean areal precipi-
tation is calculated through equation (2). The mean
square estimation error is given as

) n
El[(zi-2:)1=v— gl/l, |—£‘—J'4R(x,*u)du +

7 oS R0 duds (13)

If the functior 1s intrinsic rather than stationary, a
variogram is used instead of a covariance function. It
is well known that the relations which are valid for a
stationary case are also valid for a more general in-
trinsic case where we replace R(h) by -y (h), where
y(h) is the semi - variogram, in equations (11) and
(13) [Matheron, 1971]. The definition of a semi -

variogram 1s

F26% F2%F 19934 6 81

7(h):~é~E[(Z(x/)*Z(x:))"] (14)

As seen above, the estimation of the kriging coeffi-
cients and the estimation error involves the calcula-
tion of the double and quadruple integrals. Conven-
tional approach to calculate these integrals is to di-
-, Ay. Each
area may be represented by a point u (e. g, the cen-

vide the total area A into subareas A,

ter of the area.) Then :

N
[A | :k%?IAK (15)
1 1 N
m[«R(xfu)du: AT kE]R(xruk)AK
(16)
1 1 N N
TTTA T3 A AR - d d - R kT
|A|ZII (u=v) dudv |A|2k£1j£1 (u
V) AA, (17)

3. Random Sampling Method

When subareas of equation (15) are represented
by points u, one must discretize the domatin external-
ly to the kriging algorithm. Even though each area
can be any shape, squares are most frequently used
for they are easy to calculate the location of the cen-
ter, Different number and shape of subareas would
result in different estimates of areal precipitation and
estimation errors because representative points affect
the calculation of integrals in equations (16) and
(17).

A different approach to choose points representing
the domain is to select points randomly. Given the ge-
ometry of the area, the issue is to determine whether
a randomly selected point 1s within the boundary of
the area or not. The only information we have about
the geometry of the area is the coordinates of the ver-
tices of the polygon which approximate the boundary
of the domain. The problem of determining whether a
point is within the houndary or not is resolved using

the concept of “branch” in the theory of complex var-
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iables [ Hildebrand, 1976].

Consider a function f(w) defined on the plane of
complex variable w. Suppose further that w makes a
complete circuit (counterclockwise) around the origin
w = 0 starting from point S (see Figure 1). it is well
known that when the function f(w) has the same val-
ues for the arguments § =@, + 2kr, (k=0, +1, +2,
--) we call the difference of phase angles for the
function 27. The positive axis behaves as a branch

cut, and w = 0 a branch point.

W - piane

branch cut

Figure 1. Phase angle and branch cut on a complex plane

Table 1 summarizes the algorithm to select a
point and to determine whether it is whthin the
boundary or not. The area within which the
mean areal precipitation needs to be calculated
can be modeled as a polygon and the boundary
of the area as a circuit. Suppose a point u is se-
lected randomly. Relative positions between the
vertices of the polygon and the point 4 can be
calculated from the absolute coordinate system.
Those relative positions constitute a vector of
complex variables. Argument vector consisting
of the angles of complex variables are easily ob-
tainable. Remember that the difference of argu-

ments of & complex variable on two consecutive

branches is 27. Therefore, if the phase angle dif-
ference of a vector from u to a vertex on two
consecutive branches (for example, k = 0 and k
= 1) 1s 2, the point u 1s a branch point, mean-
ing that 1t is within the boundary. If the argu-
ment difference has the value other than 2r, the

point u is outside of the boundary.

Table 1. Algorithm for selecting a random

point inside a boundary

1. Enter coordinates of vertices x(1), (i), i = 1,
v n

2. Pick a point z randomly.

x( 1 )=, ( W 1),

3. Construct v = 2n)=x, | + i yn)v.

\a(l)-x, s W 1)y, 7
4. Calculate argument vector ; of v.
5. Find out min. p(i) and let
Q= [ Por ** Ponn ]

mod (p—q, 27r)+3
[r(1): r(2)—7(1), -, r(n+1)-r(n)}]"
8. Construct ¢ and d whose elements are

- (-1 di)>n

“Tloifi)<x

I 1 1f b(i) <-r

10 ifb(i) =2 =

9.¢=(c+d) * 2rx

10. F=/e(1), e(1)+e(2), - e(1)+ - +e(n
+ 1)]"

11. g=p+ fand 8 =g(n+1) p(1)
i [ile Y3 <0

s
r=

—
b=

4. Application

Let’s consider an example studied in Kitanidis



[1989] (see Figure 2). Absolute reference
frame is located at the left bottom. The location
of the reference frame is arbitrary. There are
four raingage stations whose coordinates and
point rainfall measurements are tabulated in
Table 2. We consider that rainfall exhibits varia-
bility at a scale comparable to the distance be-

tween stations, h. Assume that

0 it [h| =0
W=7y h i n] >0 (08
1 1 rumber of eiement
@ suvon
T T x vertex of poiygon
: s
el
i |
4« | s : 6 | 7
._.2__{___1____...%____
8 : 9 : 0 Lo : 12
___+3_____.5___..1
13 e s

Figure 2. Study area with raingage stations

Table 2. Locations of raingage stations and

rainfall measurements

Station  x (km}) v (km) Rainfall(mm)
1 5 10 7.6
z 3.5 7.5 4.5
3 5 5 3.0
4 7.5 5 14.5

4.1 Uniform Sampling

In the conventional approach the area is divid-
ed into subareas. In this example, the area has
16 squares with sides equal to 2.5km. Thus | A,

| = 6.25. The coordinates of the center of each

F2064 H29E 19934 6/

element are given in Table 3.
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Table 3. The coordinates of the center of each

element

Element i u; (km) u; (km)
1 6.25 13.75

2 3.75 11.25

3 6.25 11.25

4 3.75 8.75

5 6.25 8.75

6 8.75 8.75

7 11.25 8.75

8 1.25 6.25

9 3.75 6.25

10 6.25 6.25

11 8.75 6.25

12 11.25 6.25

13 3.75 3.75

14 6.25 3.75

15 8.75 3.75

16 6.25 1.25

First, compute the multiple integrals :

- [ 7’(xfu)afu:i 2]6 y(x, — )
[A] Ja ! J 16 =, ; &

575

_ . 566

1545

5.39
Mfi~—f [4y(u-v)dudy =~ 4‘]76 2],6
[AT7 6% 1=y 55

y(u,~v,)=6.21

Then form the kriging system

equation (11).

0. -3.915-6.000-6.590 1.
-3.915 0. -3.915-5.717 1.
6.000-3.915 0.  -3.5001.
6.590--5.717-3.500 0. 1.
1. 1. 1. 1. 0.

(A) (-5.75
Ao | |75.66
[ Ar | 545
‘Ar | |-5.39
N2 1.

of equations in

Solving the above matrix equation, we obtain

the weighting coefficients as A, == 0.31, A, = Q.

16, A, = 0.19, A, = 0.34. The Lagrange multipli-
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5. Error Analysis

The accuracy of estimation in the uniform
sampling method 1s known to be inversely pro-

portional to the number of subarea N, 1. e., z, -

1
R4 X 5=

N

tion 4.2 we have seen that the random sampling

[Journel and Huibregts, 1978]. In sec-

method results in different estimates and esti-
mation errors depending on the locations of se-

lected points. Therefore, a statistical approach

must be made in order to investigate the accura-

cy of estimation. We adopted Monte Carlo simu-
lation approach.

In Monte Carlo simulation, different “realiza-
tions” of area are generated in computer, given
the boundary and the number of points for inte-
gration. Outcomes of kriging using many reali-
zations of random points, rather than a single
realization, are Interpreted In some average
sense.

Simulations were conducted for the same ex-
ample studied in the previous section. Twenty
realizations were generated for a fixed number
of random samples. The number of sample
points were varied ranging from 5 to 55. The
statistics of mean areal precipitation estimates
and their errors are tabulated in Table 5.

The averages of estimation errors are plotted
in Figure 4 as a function of the number of inte-
gration points. As seen in the figure, the mean
square estimation error of random sampling
method 1s inversely proportinal to the number of
sample points. In other words, the error associ-
ated with estimation is inversely proportional to
the square root of the number of sample

points :

A 1
Zy— 24 X ——

b TN
where Ny is the number of sampling points. This

(19)

observation agrees with the basic theorem of
Monte Carlo integration [Press et al., 1986 ].
The integral of a function f over the multid)-

mensional volume V can be written as
D P S
[fdV x V<f> + V [<f> - <f>
\4 Ns
(20)
where the angle brackets denote taking the

arithmatic mean over the Ny sample points,

7i 5 Z —i & 2
Ry ORCYRS S R ACY

21)
The “plus —or -~ minus” term in equation (20)
1s a one standard deviation error estimate for

the integral.

Table 5. Statistics of mean areal precipitation
(MSE).

Twenty Monte Carlo simulations were conduct-

estimates and mean square errors

ed using random sampling method.

) Average 6f Average of
Sample points ,

estimates MSE

5 8.71 2.056
10 8.63 1.562
15 8.79 1.384
20 8.76 1.300
25 8.87 1.226
30 8.76 1.185
35 8.61 1.148
40 3.63 1.121
45 8.65 1.099
50 8.57 1.092
55 8.66 1.091




er is v = -1.76. Equation (2) gives the best esti-
mate as 8.596. Equation (11) yields the mean
square estimation error as 1.1063.

4.2 Random Sampling

Now, let’s apply the methodology developed in
the previous section to select points needed for
the calculation of integrals. Table 4 lists coordi-
nates of vertices of the area in Figure 2 and
one sample set of points selected randomly by
computer. For comparison purposes, the number
of pcoints were chosen to be 16. One can enter
the coordinates of vertices starting from any
vertex as long as they are entered counterclock-

wise.

Table 4. The coordinates of vertices and a sam-
ple set of random points

Vertex Random points
No. x(km) y(km) u(km) u.km)
1 5.0 0.0 6.99 9.78
2 7.5 0.0 7.48 2.32
3 75 2.5 5.12 8.93
4 10.0 2.5 8.39 9.20
5 10.0 5.0 7.21  10.89
6 12.5 5.0 7.02 6.42
7 125 100 5.70 4.99
8 75 100 444 9.99
9 7.5 15.0 6.22 4.19
10 50 15.0 7.16 3.19
11 50 125 6.64  14.58
12 25 100 5.27 8.58
13 2.5 7.5 8.87 2.72
14 0.0 7.5 3.86 8.60
15 0.0 5.0 8.31 8.44
16 2.5 5.0 9.19 3.88
17 2.5 2.5
18 5.0 2.5

$26% H20 19934 65 85

The multiple integrals using 16 randomly se-

lected points u are

1 15
m‘h ﬂx’_u)duzﬁkfl y(x, —uy)

5.20

_ ,9.54

=524

4.89
1 _ 1 ;‘6 16
|T|2f,4f,4 )’(U'"U) dudv —ﬁkt g
=1j=1

y(u,—v,) = 6.39

The kriging system of equations becomes

0. -3.915-6.000-6.590 1. A ~5.20
-3.915 0. -3.915-5.717 1. Az -5.54
-6.000-3.915 0. -3.5001. As -5.24
-6.590 -5.717 -3.500 0. 1. A4 —4.89

1. 1. 1. 1. 0. 1.

The weighting factors obtained are A, = 0.36,
A, =0.10, A;=0.16, A, =0.38 while the La-
grange multiplier v =-1.36 is resulted. Equa-
tions (2) and (13) give the best estimate as 9.
13 and the mean square estimation error as 1.
0871, respectively. It is interesting to note that
the estimation error of the random sampling
method is less than that of the uniform sam-
pling. It is because the set of random samples
chosen in this case represents a smaller area
than the case of uniform sampling (see Figure
3). A different set of sampling points would
result in different values of estimates and esti-

mation error.

* : Cantar of slement
— ] “ Random sample pont
I
|
S
' A
r. ' |
. I | . |
SRR N
| b i
| Jl | !
e
o)
| |

Q '

Figure 3. Two ways of selecting representative
points : uniform sampling and random sampling
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Figure 4. Mean square error decrease with the num-
ber of random sampling points

6. Conclusions

Various techniques are available to estimate
the mean areal precipitation over the area of in-
terest from point precipitation measurements. In
this paper, a new methodology based on kriging
was developed to estimate the mean areal pre-
cipitation and the associated estimation error.
The followings are the major conclusions drawn

from this work :

(1) Compared to the conventional approach
where the points for integration in kriging
equations are uniformly selected, the devel-

oped method selects points randomly.

(2) The developed method has advantages in
that only the coordinates of the boundary
are required, not the coordinates of the cen-
ter of subarea as in the conventional

kriging. This feature makes the method

more useful for the area with complex
boundaries in which subdivision of the area

might be inefficient and inaccurate.

(3) The accuracy of estimation using random
sampling 1s inversely proportional to the
square root of the number of sample points
whereas the accuracy of estimation using
uniform sampling is inversely proportional

to the number of subareas.
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