The purpose of this article is to examine land use change in the fringe area of a metropolitan city through multi-temporal data analysis. Change detection has been regarded as one of the most important applications for utilization of remotely sensed imageries. Conventionally, two images were used for change detection, and Arithmetic calculators were generally used on the process. Meanwhile, multi-temporal change detection for a large number of images has been carried out. In this paper, a digital land-use map and three Landsat TM data were utilized for the multi-temporal change detection Each urban area map was extracted as a base map on the process of multi-temporal change detection. Each urban area map was converted to bit image by using boolean logic. Various urban change types could be obtained by stacking the urban area maps derived from the multi-temporal data using Geographic Information System(GIS). Urban change type map was created by using the process of piling up the bit images. Then the urban change type map was compared with each land cover map for the change detection. Dalseo-gu of Daegu city and Hwawon-eup of Dalsung-gun, the fringe area of Daegu Metropolitan city, were selected for the test area of this multi-temporal change detection method. The districts are adjacent to each other. Dalseo-gu has been developed for 30 yeais and so a large area of paddy land has been changed into a built-up area. Hwawon-eup, near by Dalseo-gu, has been influenced by the urbanization of Dalseo-gu. From 1972 to 1999, 3,507.9ha of agricultural area has been changed into other land uses, while 72.7ha of forest area has been altered. This agricultural area was designated as a 'Semi-agricultural area'by the National landuse Management Law. And it was easy for the preserved area to be changed into a built-up area once it would be included as urban area. Finally, the method of treatment and management of the preserved area needs to be changed to prevent the destruction of paddy land by urban sprawl on the urban fringe.
Drivable area detection is a major task in advanced driver assistance systems. For drivable area detection, several studies have proposed vision-sensor-based approaches. However, conventional drivable area detection methods that use vision sensors are not suitable for environments with changes in road elevation. In addition, if the boundary between the road and vegetation is not clear, judging a vegetation area as a drivable area becomes a problem. Therefore, this study proposes an accurate method of detecting drivable areas in environments in which road elevations change and vegetation exists. Experimental results show that when compared to the conventional method, the proposed method improves the average accuracy and recall of drivable area detection on the KITTI vision benchmark suite by 3.42%p and 8.37%p, respectively. In addition, when the proposed vegetation area removal method is applied, the average accuracy and recall are further improved by 6.43%p and 9.68%p, respectively.
In this paper, the two-stage object detection approach is proposed to implement a deep learning-based label inspection system on edge computing environments. Since the label printed on the products during the production process contains important information related to the product, it is significantly to check the label information is correct. The proposed system uses the lightweight deep learning model that able to employ in the low-performance edge computing devices, and the two-stage object detection approach is applied to compensate for the low accuracy relatively. The proposed Two-Stage object detection approach consists of two object detection networks, Label Area Detection Network and Character Detection Network. Label Area Detection Network finds the label area in the product image, and Character Detection Network detects the words in the label area. Using this approach, we can detect characters precise even with a lightweight deep learning models. The SF-YOLO model applied in the proposed system is the YOLO-based lightweight object detection network designed for edge computing devices. This model showed up to 2 times faster processing time and a considerable improvement in accuracy, compared to other YOLO-based lightweight models such as YOLOv3-tiny and YOLOv4-tiny. Also since the amount of computation is low, it can be easily applied in edge computing environments.
Seo, Seok-Bae;Kim, Jong-Woo;Lee, Joo-Hee;Lim, Hyun-Su;Choi, Gi-Hyuk;Choi, Hae-Jin
대한원격탐사학회:학술대회논문집
/
대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
/
pp.458-460
/
2003
This paper proposes new algorithms for cloudy area detection by GHA (Generalized Hebbian Algorithm) and SOFM (Self-Organized Feature Map). SOFM and GHA are unsupervised neural networks and are used for pattern classification and shape detection of satellite image. Proposed algorithm is based on block based image processing that size is 16${\times}$16. Results of proposed algorithm shows good performance of cloudy area detection except blur cloudy area.
승강장에는 승객의 안전사고를 방지하기 위하여 스크린도어를 설치하고 있으며 스크린도어에는 장애물 검지를 위해 Area센서를 설치하고 있다. 그러나 먼지, 햇빛, 눈, 벌레 등으로 인한 스크린도어의 빈번한 동작오류가 원활한 열차운행을 방해하고 있어 장애물 감지 센서의 동작오류 감소와 장애물 검지 기능을 고도화하기 위한 대체 검지기의 연구가 필요하다. 본 논문에서는 대구 문양역에 시범운영 중인 로프타입 상하개폐식 스크린도어에 Area센서와 장애물검지 다중공간분할 검지알고리즘을 적용한 3D센서를 설치하여 검지 데이터를 수집하고 CCTV를 이용한 영상데이터 판독결과를 비교하였다. 3D 센서의 장애물 검지율은 약 86.91%로 Area센서의 약 78.88% 대비 장애물 검지율이 6.87~9.79%가 더 높아 설치비용의 절감과 검지성능을 개선한 3D 센서의 적용 가능성을 확인 할 수 있었다.
Change detection is one of the common research topics in remote sensing. In general, global change detection methods using image difference method, etc, are used in low resolution images and local change detection methods using floating windows, etc, are used in high resolution images. But, these methods have disadvantages in practical use. If changed area images are automatically produced, these images will be used in public area such as regional planning, regional development managements. In this research, we developed new change detection method applicable KOMPSAT EOC images. This method automatically produces subset images in changed area.
Because arsenic (As) is a chemical substance toxic to humans, there have been extensive investigations on the development of As detection methods. In this study, the electrochemical determination of As on nanoporous gold (NPG) electrodes was investigated using anodic stripping voltammetry. The electrochemical surface area of the NPG electrodes was controlled by changing the reaction times during the anodization of Au for NPG preparation, and its effect on the electrochemical behavior during As detection was examined. The detection efficiency of the NPG electrodes improved as the roughness factor of the NPG electrodes increased up to around 100. A further increase in the surface area of the NPG electrodes resulted in a decrease of the detection efficiency due to high background current levels. The most efficient As detection efficiency was obtained on the NPG electrodes prepared with an anodization time of 50 s. The effects of the detection parameters and of the Cu interference in As detection were investigated and the NPG electrode was compared to flat Au electrodes.
본 논문에서는 많은 개체와의 충돌 검사를 요구하는 입자 기반 시스템에서 부채꼴 영역의 동적인 변화를 이용하여 효율적으로 충돌 검사를 가속화시킬 수 있는 프레임워크를 제안한다. 입자와 부채꼴 기반의 충돌 영역은 다음 세 가지 조건에 의해 결정된다: 1) 인접 입자의 반경 내에 부채꼴의 위치가 존재하는 경우, 2) 부채꼴 영역 내에 인접 입자의 위치가 존재하는 경우, 3) 부채꼴 영역을 형성하는 두 벡터 사이에 인접 입자가 존재하는 경우. 결과적으로 위 조건들을 모두 만족했을 때 입자와 부채꼴 영역은 충돌되었다고 정의한다. 본 논문에서는 입자의 움직임에 따라 충돌 검사 범위인 부채꼴의 영역을 자동으로 업데이트 한다. 부채꼴 영역의 동적인 변화를 계산하기 위해 입자의 위치와 속도를 기반으로 부채꼴의 방향, 길이, 각도를 조절한다. 최종적으로 계산된 부채꼴 영역 내에 있는 입자들만을 이용하여 충돌 검사를 빠르게 수행한다. 본 연구에서 제안하는 가속화 방법은 트리와 같은 자료구조를 명시적으로 만들지 않고, 닫힌 형태 방정식으로 실행되기 때문에 간단하게 구현되며 모든 결과에서 충돌 검사 성능이 개선되었다.
This study is about fault detection and fault area detection of LV circuit in Cab Cubicle system which have control of train to keep safety in High Speed Train. LV circuit is operated with diagnosis system like safety system. In this paper, we suggest a design and an implementation method to detect fault or to detect fault area automatically about LV circuit. The implemented system is tested successfully after implementation of some function. We expect reduction to diagnosis area or repair time by fault area module
본 논문은 온라인 얼굴 인식에서 전처리에 해당하는 얼굴 검출방법을 다룬다. 기존의 얼굴 검출 방법에서 에지 정보만을 이용한 얼굴 검출 방법과 컬러 정보를 이용한 얼굴 검출 방법의 단점을 상호 보완하기 위해 본 연구에서는 에지 정보와 컬러 정보를 결합한 얼굴 검출 방법 및 중심 영역 컬러 샘플링을 이용한 얼굴 검출방법을 개발하였다. 즉, 사람의 얼굴 영역이 비슷한 컬러를 가진 배경 영역과 결합(Merge)되는 것을 막기 위해 먼저 적응형 에지 검출 알고리즘을 수행하여 배경과 얼굴 영역을 각각의 고립 영역으로 분할한다. 제안된 적응형 소벨(Sobel) 에지 검출기는 배경 영역과 얼굴 영역의 경계에서 항상 에지가 발생할 수 있도록 에지가 많이 검출되고 입력 영상의 밝기 변화에 강인하다. 이로 인해 얼굴 영역이 하나의 영역이 아닌 여러 영역으로 분할되어 나타날 수 있으므로, 각 영역들의 컬러 정보를 이용해 병합한 후, 최종 얼굴 영역을 MBR(minimum bounding rectangle) 형태로 검출하였다. 이때 병합된 최종 얼굴 영역 후보가 너무 크거나 혹은 너무 작으면, 중심 영역 샘플링 방법을 이용해 다시 얼굴 영역을 검출한다. 총 2100장의 얼굴 영상 데이터베이스를 통해 실험한 결과 본 연구에서 제안한 방법을 사용해 96.3%의 높은 얼굴 영역 검출 성공률을 얻을 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.