• Title/Summary/Keyword: architecture for safety

Search Result 1,597, Processing Time 0.026 seconds

Reviewing the Expandability of KBimCode based on the Comparison between Korean and Chinese Building Act - Centered around the Egress and Fire Safety Related Regulations - (한.중 건축법규 비교분석을 통한 KBimCode의 확대 적용가능성 고찰 - 피난 및 방화와 관련된 법규항목을 중심으로 -)

  • Huang, JinHua;Park, SeoKyung;Lee, Jin-Kook
    • Design Convergence Study
    • /
    • v.15 no.6
    • /
    • pp.73-92
    • /
    • 2016
  • As one of empirical research and developments on BIM applications to improve design quality and productivity of building, efforts have been devoted to automated compliance checking of building design for building permit. KBimLogic is a mechanism that translate Korean Buidling Act to the computational language called KBimCode. KBimCode aims to standardized and neutral language that can be applied to various design rules. This paper focuses on testing expandability of KBimCode by appling it on Chinese Building Act. We analyzed Chinese national regulation on fire protection and evacuation, based on 1) Object·property, 2) function for predicate processing, 3) relationship of sentences. As a result, Chinese Building Act were successfully translated to KBimCode with some important implications for further application. Based on the finding of the paper, KBimCode is expected to be applicable to kinds of design rules.

System Development for Tracking a UHF Passive RF1D Tag in an Outpatient Clinic (외래병원 환경에서 UHF 수동형 RFID 기술을 활용한 태그 추적 시스템 개발)

  • Min, Dai-Ki
    • The Journal of Society for e-Business Studies
    • /
    • v.16 no.3
    • /
    • pp.113-127
    • /
    • 2011
  • An RFID system has been widely applied in many areas over the initial SCM application. In the literature enormous RFID applications in healthcare are documented to improve patient safety, patient/provider logistics, and the efficiency of collecting data. Based on the proposed 4-layered RFID system architecture, we introduce a case that implemented an UHF passive RFID-based tracking system in an outpatient clinic. Particularly, we propose a method to process RFID data that contains noise and missing reads. The proposed method for processing unreliable RFID data is capable to locate the tag accurately and provide additional business information. We finally conclude the paper with identifying obstacles and what is necessary to ensure system reliability.

Comparative Study on the Application of Direct Analysis Method to Large Container Carriers (대형 컨테이너선의 직접해석법에 관한 비교 연구)

  • Ryu Hong-Ryeul;Lee Joo-Sung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.4 s.148
    • /
    • pp.484-493
    • /
    • 2006
  • Recently, direct load analysis using ship motion program is required to confirm structural safety for the Post-Panamax class large container carrier. However, there is no exact comparative study data for structural response between 20 and 30 wave load. So, in this paper, to compare the hull girder stress response between 20 versus 3D wave load calculation method, direct load analysis and global F.E analysis have been performed for three kinds of large container vessels using each 20 and 30 wave load calculation program. The results of 2D wave load RAO(Response Amplitude Operator) of each dominant load parameter(vertical, torsional and horizontal moment) are generally bigger than that of 30 results, especially in vertical wave bending moment. And the results of structural analysis based on the equivalent design wave method shows that there is a big difference in view of stress, but the stress distribution is very similar for each wave load case.

Optimum Evaluation of Reinforcement Cord of Air Spring for the Vehicle Suspension System (자동차 현가장치를 위한 에어스프링 보강코드의 최적 성능평가)

  • Kim, Byeong-Soo;Moon, Byung-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.357-362
    • /
    • 2011
  • Air springs are prevalently used as suspension in train. However, air springs are seldom used in automobiles where they improve stability and comfort by enhancing the impact-relief, breaking, and cornering performance. Thus, this study proposed a new method to analyze air springs and obtained some reliable design parameter which can be utilized in vehicle suspension system in contrast to conventional method. Among air spring types of suspension, this study focused on sleeve type of air spring as an analysis model since it has potential for ameliorating the quality of automobiles, specifically in its stability and comfort improvement by decreasing the shock through rubber sleeve. As a methodology, this study used MARC, as a nonlinear finite element analysis program, in order to find out maximum stress and maximum strain depending on reinforcement cord's angle variation in sleeves. The properties were found through uniaxial tension and pure shear test, and they were developed using Ogden Foam which is an input program of MARC. As a result, the internal maximum stresses and deformation according to the changes of cord angle are obtained. Also, the results showed that the Young's modulus becomes smaller, then maximum stresses decrease. It is believed that these studies can be contributed in automobile suspension system.

A Study of the Examination of the Freeboard of a Chemical Tanker Considering Deck Wetness (갑판침수를 고려한 화학제품운반선 건현 검토에 관한 연구)

  • Park, Jong-Heon
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.41-46
    • /
    • 2010
  • This paper deals with the problem of developing a new decision procedure for the freeboard of a coastal chemical tanker going on the coast. The decision procedure is mainly constructed with the algorithm of estimating statistically the time period that deck wetness will last on the deck of the ship. Deck wetness is one of the most important safety factors for sailing of a coaster. It generally means the situation in which the amplitude of the relative motion between the deck and the surface of the wave exceeds the freeboard. Therefore, in this paper, we proposed that the time during which the amplitude remains above the level of the freeboard should be appraised on the basis of statistical theory. A series of numerical calculations were executed for four different coastal chemical tankers (199G/T Type II, III & 499G/T Type II, III). It was demonstrated that the present decision procedure of freeboard is practical for planning the type of coaster sailing in the sea.

Hysteretic Behavior of Steel Damper for the Lateral Displacement Control (횡 변위 조절을 위한 강재 댐퍼의 이력 거동)

  • Lee, Hyun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.46-52
    • /
    • 2018
  • Detail development and performance tests were conducted for the purpose of developing a damper system capable of lateral displacement control of existing frame structures. The development details are 1) ALD designed to prevent deformation of beams between columns and 2) AWD designed to control inter-story displacement. The non-reinforced BF specimen was used as a comparative study. The evaluation variables are failure mode, load-displacement curve, envelope curve, maximum strength, stiffness degradation and energy dissipation capacity. As a result, the seismic strengthening effect of ALD and AWD was confirmed. Also, it was confirmed that the method of restraining the column with the aramid sheet is superior to the improvement of the seismic performance.

State of the Art 3GPP M2M Communications toward Smart Grid

  • Kwon, Young-Min;Kim, Jun-Suk;Chung, Min-Young;Choo, Hyun-Seung;Lee, Tae-Jin;Kim, Mi-Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.2
    • /
    • pp.468-479
    • /
    • 2012
  • Recent advances in wireless communications and electronics has enabled the development of machine-to-machine (M2M) communications. This communication paradigm has been expected as an automated control and report solution for smart grid. The smart grid enables customers and operators to utilize the collected usage information from a large number of meters with transceivers for efficiency and safety. In this paper, we introduce architecture, requirements and challenges of M2M communications for smart grid. We extract technical issues that should be resolved in M2M communications to support the smart grid via third-generation partnership project (3GPP) cellular networks. We then present the current state of the art of research results to deal with such issues. Finally, we outline the open research issues.

Trusted Information Sharing Model in Collaborative Systems (협업 환경 내 신뢰할수 있는 정보 공유 모델)

  • Hong, Seng-Phil;Kim, Jae-Hyoun
    • Journal of Internet Computing and Services
    • /
    • v.8 no.1
    • /
    • pp.99-113
    • /
    • 2007
  • In the rapidly changing e-business environment, organizations need to share information, process business transactions, and enhance collaborations with relevant entities by taking advantage of the various technologies. However, there are always the security issues that need to be handled in order for the e-business operations to be run efficiently. In this research, we suggest the new security authorization model for safety flexible supporting the needs of e-business (e-marketplace) in an organization. This proposed model provides the scalable of access control policy among multi-domains, and preservation of flexible authorization management in distributed system environments. For servers to take the access control policy and enforcement decisions, we also describe the feasible authorization architecture is concerned with how they might seek advice and guideline from formal access control model.

  • PDF

Benefit/Cost Analysis of Form Work Methods for Composite Basement Wall in Building Constructions (건축물의 합성 지하옹벽 거푸집에 대한 편익·비용 분석 연구)

  • Kim, Jae Yeob;Kim, Gwang-Hee;Ahn, Sung-Hoon;Lee, Ji-Young
    • KIEAE Journal
    • /
    • v.8 no.1
    • /
    • pp.99-104
    • /
    • 2008
  • This study surveys the types of form works used for constructing composite basement walls found in domestic construction sites. Based on expert surveys, the research provides criteria for selecting a form work type and cost-benefit analysis for different types of form works. In selecting a form work type, safety was considered the most important factor. It is induced from the survey that a successful construction requires a form work type that could solidly bear the lateral pressure of concrete rather than other types that cut back the cost and shorten the construction period. In the cost-benefit analysis, the benefit was the highest in 'euro-form+soldier system', and the cost was most competent in 'rib-lath+soldier system'. In considering benefit and cost together, 'euro-form+soldier system' was judged to be the best option. This is likely to be attributed to the following reasons: site workers are familiar with euro-forms because it is the most widely used; and, soldier system is more reliable in bearing lateral pressure compared to steel pipes.

Symptom-based reliability analyses and performance assessment of corroded reinforced concrete structures

  • Chen, Hua-Peng;Xiao, Nan
    • Structural Engineering and Mechanics
    • /
    • v.53 no.6
    • /
    • pp.1183-1200
    • /
    • 2015
  • Reinforcement corrosion can cause serious safety deterioration to aging concrete structures exposed in aggressive environments. This paper presents an approach for reliability analyses of deteriorating reinforced concrete structures affected by reinforcement corrosion on the basis of the representative symptoms identified during the deterioration process. The concrete cracking growth and rebar bond strength evolution due to reinforcement corrosion are chosen as key symptoms for the performance deterioration of concrete structures. The crack width at concrete cover surface largely depends on the corrosion penetration of rebar due to the expansive rust layer at the bond interface generated by reinforcement corrosion. The bond strength of rebar in the concrete correlates well with concrete crack width and decays steadily with crack width growth. The estimates of cracking development and bond strength deterioration are examined by experimental data available from various sources, and then matched with symptom-based lifetime Weibull model. The symptom reliability and remaining useful life are predicted from the predictive lifetime Weibull model for deteriorating concrete structures. Finally, a numerical example is provided to demonstrate the applicability of the proposed approach for forecasting the performance of concrete structures subject to reinforcement corrosion. The results show that the corrosion rate has significant impact on the reliability associated with serviceability and load bearing capacity of reinforced concrete structures during their service life.