• Title/Summary/Keyword: arbitrary Lagrangian-Eulerian

Search Result 108, Processing Time 0.026 seconds

Computation of pressure fields in application of the Lagrangian vortex method (Lagrangian 보우텍스방법에서의 압력장계산)

  • Kim K. S.;Lee S. J.;Suh J. C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.37-42
    • /
    • 2003
  • A vorticity-velocity integro-differential formulation of incompressible Wavier-Stokes equations is described, focusing on a scheme for calculating pressure fields in application of the Lagrangian vortex method in connection with panel methods. It deals with the dynamic coupling among velocity, vorticity and pressure, and the Helmholtz decomposition of the velocity field, through a comparative study with the Eulerian finite volume method, we provide an extensive understanding of the Lagrangian vortex methods for numerical simulations of viscous flows around arbitrary bodies.

  • PDF

Computations of Flows and Acoustic Wave Emitted from Moving Body by ALE Formulation in Finite Difference Lattice Boltzmann Model (차분격자볼츠만법에 ALE모델을 적용한 이동물체 주위의 흐름 및 유동소음의 수치모사)

  • KANG HO-KEUN
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.1 s.68
    • /
    • pp.48-54
    • /
    • 2006
  • In this paper, flowfield and acoustic-field around moving bodies are simulated by the Arbitrary Lagrangian Eulerian (ALE) formulation in the finite difference lattice Boltzmann method. Some effects are checked by comparing flaw about a square cylinder in ALE formulation and that in the fixed coordinates, and both agree very well. Matching procedure between the moving grid and fixed grid is also considered. The applied method in which the both grids are connected through buffer region is shown to be superior to moving overlapped grid. Dipole-like emissions of sound wave from harmonically vibrating bodies in two- and three-dimensional cases are simulated.

FE Analysis of Three Dimensional Backward Extrusion Using the ALE description (ALE 묘사에 왜한 3차원 후방압출 해석)

  • 정상원;정용호;김규하;조규종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.628-631
    • /
    • 2002
  • This paper has executed FE-analysis to review the feasibility for developing the process, which produces the narrow-cubic type cans, using the Backward Impact Extrusion process instead of using current process, multi-stage deep drawing. Proposes an analysis method by applying ALE(Arbitrary Lagrangian-Eulerian) description to non-axisymmetric extrusion. which is appreciated as one of good solution to mesh distortion in case of the large deformation plasticity process that has mass flux, and considers the factors which affects forming-loads related to punch velocity and fulid status of material.

  • PDF

Direct Simulation of Flows and Flow Noise around Moving Body by FDLBM with ALE Model (ALE모델을 갖는 차분격자볼츠만법에 의한 이동물체 주위의 유동장 및 유동소음의 직접계산)

  • Kang, Ho-Keun;Michihisa, Tsutahara;Kim, Myoung-Ho;Kim, Yu-Taek;Lee, Young-Ho
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.248-249
    • /
    • 2005
  • In this paper, flowfield and acoustic-field around moving bodies are simulated by the Arbitrary Lagrangian Eulerian (ALE) formulation in FDLBM. The effect of the ALE is checked by comparing flow about a square cylinder in ALE formulation and that in the fixed coordinates, and the results show good agreement. Matching procedure between the moving grid and fixed grid is also considered. The applied method in which the both grids are connected through buffer zone is shown to be superior to moving overlapped grid. Dipole-like emissions of sound wave from harmonically vibrating bodies in 2- and 3-dimensional cases are simulated.

  • PDF

The Spectrally Accurate Method Applied to Wave-Current Interaction as a Freak Wave Generation Mechanism

  • Sung, Hong-Gun;Hong, Key-Yong;Kyoung, Jo-Hyun;Hong, Sa-Young
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.113-120
    • /
    • 2006
  • In this paper, generation mechanisms of ocean freak waves are briefly introduced in the context of wave-current interaction phenomena. As an accurate and efficient numerical tool, the spectral element method is presented with general features and specific treatment for the wave-current interaction problem. The present model of the fluid motion is based on the Navier-Stokes equations incorporating a velocity-pressure formulation. In order to deal with the free surface motion, an Arbitrary Lagrangian-Eulerian (ALE) description is adopted. As an intermediate stage of development, solution procedure and characteristic aspects of the present modeling and numerical method features are addressed in detail, and numerical results for wave-current interaction is left as further study.

  • PDF

Numerical Analysis for the Piston-Driven Intake Flows using the Finite Element Method (피스톤에 의해 유입되는 유동에 대한 유한요소법을 이용한 수치해석)

  • Choi J. W.;Park C. K.
    • Journal of computational fluids engineering
    • /
    • v.4 no.2
    • /
    • pp.39-46
    • /
    • 1999
  • The FVM(Finite Volume Method) have been used mainly for the flow analyses in the piston-cylinder. The objective of the present study is to analyze numerically the piston-driven intake flows using the FEM(Finite Element Method). The FEM algorithm used in this study is 4-step time-splitting method which requires much less execution time and computer storage than the velocity-pressure integrated method and the penalty method. And the explicit Lax-Wendroff scheme is applied to nonlinear convective term in the momentum equations to prevent checkerboard pressure oscillations. Also, the ALE(arbitrary Lagrangian Eulerian) method is adopted for the moving grids. The calculated results show good agreement in comparison with those by the FVM and the experimental results by the LDA.

  • PDF

An ALE Finite Element Method for Baffled Fuel Container in Yawing Motion

  • Cho, Jin-Rae;Lee, Hong-Woo;Yoo, Wan-Suk;Kim, Min-Jeong
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.460-470
    • /
    • 2004
  • A computational analysis of engineering problems with moving domain or/and boundary according to either Lagrangian or Eulerian approach may encounter inherent numerical difficulties, the extreme mesh distortion in the former and the material boundary indistinctness in the latter. In order to overcome such defects in classical numerical approaches, the ALE(arbitrary Lagrangian Eulerian) method is widely being adopted in which the finite element mesh moves with arbitrary velocity. This paper is concerned with the ALE finite element formulation, aiming at the dynamic response analysis of baffled fuel-storage container in yawing motion, for which the coupled time integration scheme, the remeshing and smoothing algorithm and the mesh velocity determination are addressed. Numerical simulation illustrating theoretical works is also presented.

Investigation on Structural Design and Impact Damage for a Small Wind Turbine Blade (소형 풍력발전기 블레이드의 구조설계 및 충격손상 안전성 연구)

  • Kong, Changduk;Choi, Suhyun;Park, Hyunbum
    • Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.1-7
    • /
    • 2008
  • Recently the wind energy has been alternatively used as a renewable energy resource instead of the mostly used fossil fuel due to its lack and environmental issues. This work is to propose a structural design and analysis procedure for development of the low noise 100W class small wind turbine system which will be applicable to relatively low speed region like Korea and for the domestic use. Structural analysis including load cases, stress, deformation, buckling, vibration and fatigue life was performed using the Finite Element Method, the load spectrum analysis and the Miner rule. In order to evaluate the designed structure, the structural test was carried out and its test results were compared with the estimated results. In addition, the blade should be safe from the impact damage due to FOD(Foreign Object Damage) including the bird strike. In order to analize the bird strike penomena on the blade, MSC. Dytran was used, and the applied method Arbitrary Lagrangian-Eulerian was evalud by comparison with the previous study results.

  • PDF

Investigation of Wave Resistance Performance for Ships and Offshore Structures based on Arbitrary Lagrangian Eulerian Method (ALE 기법을 기반 선박 및 해양 구조물의 내파 성능 분석)

  • Lee, Chi-Seung;Kim, Joo-Hyun;Kim, Myung-Hyun;Lee, Jae-Myung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.553-556
    • /
    • 2011
  • The primary aim of the present study is to propose new design formulae that can be used to evaluate the structural performance of breakwaters installed on container carriers under green water impact loads. A series of numerical analyses for green water impact loads inducing breakwater collapse have been carried out. The well-known fluid-structure interaction analysis technique has been adopted realistically to consider the phenomenon of green water impact loads. The structural behavior of these breakwaters under green water impact loads has also been carried out simultaneously throughout the transient analysis. A verification study of the numerical results was performed using the actual collapse incidents of breakwaters on container carriers. It would be expected that the proposed design formulae, based on the obtained insights, could be used as practical guidelines for the design of breakwaters on container carriers.

  • PDF

Evaluation of sloshing Resistance Performance of LNG Carrier Insulation System by Fluid-Structure Interaction Analysis (유체-구조 연성 해석을 이용한 LNG 운반선 방열시스템의 내슬로싱 성능 평가)

  • Lee, Chi-Seung;Kim, Joo-Hyun;Kim, Wha-Soo;Noh, Byeong-Jae;Kim, Myung-Hyun;Lee, Jae-Myung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.557-560
    • /
    • 2011
  • In the present paper, the sloshing resistance performance of an LNG carrier insulation system is evaluated by fluid-structure interaction (FSI) analysis. For this analysis, the arbitrary Lagrangian Eulerian (ALE) method is adopted to accurately calculate the structural behavior induced by internal LNG motion of a KC-1 type LNG carrier cargo tank. In addition, the global-local analysis method is introduced to reduce computational time and cost. The global model is built from shell elements to reduce the sloshing analysis time. The proposed novel analysis techniques can potentially be used to evaluate the structural integrity of LNG carrier insulation systems.

  • PDF