• Title/Summary/Keyword: arbitrarily shaped plates

검색결과 19건 처리시간 0.025초

임의 형상 음향 공동의 효율적인 고유치 해석 기법 개발 (Development of an Effective Method for Extracting Eigenvalues of Arbitrarily Shaped Acoustic Cavities)

  • 강상욱
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.124-129
    • /
    • 2011
  • An improved NDIF method is introduced to efficiently extract eigenvalues of two-dimensional, arbitrarily shaped acoustic cavities. The NDIF method, which was developed by the authors for the eigen-mode analysis of arbitrarily shaped acoustic cavities, membranes, and plates, has the feature that it yields highly accurate eigenvalues compared with other analytical methods or numerical methods (FEM and BEM). However, the NDIF method has the weak point that the system matrix of the NDIF method depends on the frequency parameter and, as a result, a final system equation doesn't take the form of an algebra eigenvalue problem. The system matrix of the improved NDIF method developed in the paper is independent of the frequency parameter and eigenvalues can be efficiently obtained by solving a typical algebraic eigenvalue problem. Finally, the validity and accuracy of the proposed method is verified in two case studies, which indicate that eigenvalues and mode shapes obtained by the proposed method are very accurate compared to the exact method, the NDIF method or FEM(ANSYS).

  • PDF

임의 형상 음향 공동의 효율적인 고유치 및 고유모드 추출을 위한 개선된 NDIF법 개발 (Development of an Improved NDIF Method for Efficiently Extracting Eigenvalues and Eigenmodes of Arbitrarily Shaped Acoustic Cavities)

  • 강상욱;윤주일
    • 한국소음진동공학회논문집
    • /
    • 제21권10호
    • /
    • pp.960-966
    • /
    • 2011
  • An improved NDIF method is introduced to efficiently extract eigenvalues and eigenmodes of two-dimensional, arbitrarily shaped acoustic cavities. The NDIF method, which was developed by the authors for the eigen-mode analysis of arbitrarily shaped acoustic cavities, membranes, and plates, has the feature that it yields highly accurate eigenvalues compared with other analytical methods or numerical methods(FEM and BEM). However, the NDIF method has the weak point that the system matrix of the NDIF method depends on the frequency parameter and, as a result, a final system equation doesn's take the form of an algebra eigenvalue problem. The system matrix of the improved NDIF method developed in the paper is independent of the frequency parameter and eigenvalues and mode shapes can be efficiently obtained by solving a typical algebraic eigenvalue problem. Finally, the validity and accuracy of the proposed method is verified in two case studies, which indicate that eigenvalues and mode shapes obtained by the proposed method are very accurate compared to the exact method, the NDIF method or FEM(ANSYS).

무요소법을 이용한 임의 형상 평판의 고정확도 고유치 추출 기법 (Extraction of Accurate Eigenvalues of Plates Using a Meshless Method)

  • 강상욱;우윤환
    • 한국소음진동공학회논문집
    • /
    • 제25권11호
    • /
    • pp.779-786
    • /
    • 2015
  • The Kansa method, which is used for various free vibration problems of arbitrarily shaped plates including membranes, discretizes the domain of a plate using only nodes without elements unlike FEM. The method requires a small amount of computation relative to FEM thanks to this discretization scheme but has limit in the accuracy of its solution. This paper reveals the reason of the limit and, to overcome the limit, proposes the practical method of calculating the singularity of a system matrix and extracting accurate natural frequencies. Case studies for a rectangular plate and an arbitrarily shaped plate validate the proposed method.

급수 함수를 이용한 임의 형상 고정단 평판의 자유 진동 해석 (Free Vibration Analysis of Clamped Plates with Arbitrary Shapes Using Series Functions)

  • 강상욱
    • 한국소음진동공학회논문집
    • /
    • 제17권6호
    • /
    • pp.531-538
    • /
    • 2007
  • A new method for free nitration analysis using series functions is proposed to obtain the eigenvalues of arbitrarily shaped, polygonal plates with clamped edges. Since a general solution used in the method satisfies the equation of motion for the transverse vibration of a plate, the method offers very accurate eigenvalues, compared to FEM or BEM results. In addition, the method can minimize the amount of numerical calculation because it has the advantage of not needing to divide the plate of interest. Two case studies show that the proposed method is valid and accurate when the eigenvalues by the proposed method are compared to those by FEM (NASTRAN) or another analytical method.

An assumed-stress hybrid element for modeling of plates with shear deformations on elastic foundation

  • Darilmaz, Kutlu
    • Structural Engineering and Mechanics
    • /
    • 제33권5호
    • /
    • pp.573-588
    • /
    • 2009
  • In this paper a four-node hybrid stress element is proposed for analysing arbitrarily shaped plates on a two parameter elastic foundation. The element is developed by combining a hybrid plate stress element and a soil element. The formulation is based on Hellinger-Reissner variational principle in which both inter element compatible boundary displacement and equilibrated stress fields for the plate as well as the foundation are chosen separately. This formulation also allows a low order polynomial interpolation functions. Numerical examples are presented to show that the validity and efficiency of the present element for the plate analysis resting on an elastic foundation. In these examples the effect of soil depth, interaction between closed plates on soil parameters, comparison with Winkler hypothesis is investigated.

임의 형상 고정단 평판의 고정밀도 고유치 해석을 위한 파동 함수 기반 무요소법 (Meshless Method Based on Wave-type Function for Accurate Eigenvalue Analysis of Arbitrarily Shaped, Clamped Plates)

  • 강상욱
    • 한국소음진동공학회논문집
    • /
    • 제26권5호
    • /
    • pp.602-608
    • /
    • 2016
  • The paper proposes a practical meshless method for the free vibration analysis of clamped plates having arbitrary shapes by extending the non-dimensional dynamic influence function (NDIF) method, which was developed by the author in 1999. In the proposed method, the domain and boundary of the plate of interest are discretized using only nodes without elements unlike FEM and the system matrices are obtained by making domain nodes and boundary nodes satisfy the governing differential equation and boundary conditions, respectively. However, since the above system matrices are not square ones, the problem of free vibrations of clamped plates is not reduced to an algebraic eigenvalue problem. An additional theoretical treatment is considered to produce an algebraic eigenvalue problem. It is revealed from case studies that the proposed method is valid and accurate.