• Title/Summary/Keyword: aramid fiber reinforced polymer

Search Result 18, Processing Time 0.02 seconds

Experimental Study on Bond Strength of AFRP Rebar in Normal Strength Concrete (AFRP 보강근의 부착강도에 대한 실험적 연구)

  • Choi, June-Ho;Park, Kyung-Chan;Lee, Young-Hak;Kim, Hee-Cheul;Lee, Jae-Sam
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.9-16
    • /
    • 2009
  • For reinforced concrete members, bond strength is one of the important factors between the two materials: the concrete and the reinforcing element. The bond strength of Aramid Fiber Reinforced Polymer (AFRP) rebar was tested using the pull-out method. Presented were comparison results of the bond strength between AFRP rebar and deformed steel bars from the test. Embedded lengths and diameters of the rebar were taken into account as parameters. The bond stress-slip responses and failure modes of AFRP rebar were evaluated. It was found that the bond stress-slip responses of AFRP rebar were similar to those of deformed steel bars. As the diameter of rebar increased, the pull-out load increased. In addition, it was shown that the bond strength of an AFRP rebar was approximately 54% compared with that of a deformed steel bar.

Flexural behavior of concrete beams reinforced with aramid fiber reinforced polymer (AFRP) bars

  • Kim, Min Sook;Lee, Young Hak;Kim, Heecheul;Scanlon, Andrew;Lee, Junbok
    • Structural Engineering and Mechanics
    • /
    • v.38 no.4
    • /
    • pp.459-477
    • /
    • 2011
  • Due to the low elastic modulus of FRP, concrete members reinforced with FRP rebars show greater deflections than members reinforced with steel rebars. Deflection is one of the important factors to consider the serviceability of horizontal members. In this study flexural test of AFRP reinforced concrete beams was performed considering reinforcement ratio and compressive strength as parameters. The test results indicated that flexural capacity and stiffness increase in proportion to the reinforcement ratio. The test results were compared with existing proposed equations for the effective moment of inertia including ACI 440. The most of the proposed equations were found to over-estimate the effective moment of inertia while the equation proposed by Bischoff and Scanlon (2007) most accurately predicted the values obtained through actual testing.

Bond Characteristics of FRP sheet to Various Types under Cyclic Load (반복하중하의 FRP 시트 종류에 따른 부착특성)

  • Ko, Hune Bum
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.131-138
    • /
    • 2008
  • Fiber-reinforced polymer (FRP) sheets have been successfully used to retrofit a number of existing concrete buildings and structures because of their excellent properties (high strength, light weight and high durability). Bond characteristics between FRP sheets and concrete should be investigated to ensure an effective retrofitting system. RC structures strengthened with FRP sheets are often subjected to cyclic load (traffic, seismic, temperature, etc.). This research addresses a local bond stress-slip relationship under cyclic loading conditions for the FRP-concrete interface. 18 specimens were prepared with three types of FRP sheets (aramid, carbon, and polyacetal) and two types of sheet layer(one or two). The characteristics of bond stress-slip were verified through experimental results on load-displacement relationship.

Short Aramid Fiber Reinforced Polyethylene and Epoxy Composity- I. Studies on the Curing Acceleration of Epoxy/Amine System by Differential Scanning Calorimeter (Aramid단섬유보강 고기능폴리에틸렌 및 에폭시 복합재료 제조- I.DSC에 의한 에폭시/아민계의 경화 촉진 연구)

  • Ha, Chan Sik;Lim, Seung Ha;Kim, Byung Kyu;Chin, Young Jo;Cho, Won Jei
    • Applied Chemistry for Engineering
    • /
    • v.3 no.1
    • /
    • pp.111-118
    • /
    • 1992
  • The curing acceleration of epoxy/amine system was investigated by using differential scanning calorimeter(DSC), The epoxy, diglycidylether of bisphenol A (DGEBA) was cured with methylene dianiline (MDA) with or without accelerators. Two kinds of accelerators were tested for the study ; tris(dimethylaminomethyl)phenol (DMP - 30) and 3 - (3,4 - dichlorophenyl)-1, 1-dimethylurea (DIURON). Heats of reaction and glass transition temperatures ($T_g$) of the cured epoxy system were analyzed by DSC along with the estimation of activation energy by the dynamic DSC studies. It was found that DMP - 30 is more effective accelerator than DIURON which showed faster curing and lower activation energy.

  • PDF

Mechanical Properties of NBR Rubber Composites Filled with Reinforced Fiber and Ceramics (강화섬유와 세라믹이 충진된 NBR 고무 복합체의 기계적 물성 특성)

  • Kwon, Byeong-Jin;Kim, Young-Min;Lee, Danbi;Park, Soo-Yong;Jung, Jinwoong;Chung, Ildoo
    • Journal of Adhesion and Interface
    • /
    • v.22 no.4
    • /
    • pp.118-127
    • /
    • 2021
  • In this study, the mechanical properties of vulcanized rubber were evaluated through compounding by controlling filler content to improve the mechanical properties of NBR rubber. Aramid and glass fibers with excellent heat resistance were used as fillers, and ceramics were additionally used in anticipation of a complementary effect, and as for the ceramic materials, needle-shaped and plate-shaped ceramics were used. Each filler was used in an amount of 5.0, 10.0, 15.0, and 20.0 phr in order to investigate the basic properties according to the amount of filler. To confirm the complementary effect through ceramic application, each 10.0 phr fiber and ceramic were mixed with 1:1 ratio to evaluate mechanical properties. As a result, it was confirmed that the decreasing ratio of tensile strength after heat aging was small in the order of aramid fiber, acicular ceramic, glass fiber, and plate ceramic in the case of applying the filler alone. In addition, the mechanical characteristics of vulcanized rubber using composite filler based on fibers and ceramics were evaluated, and it was confirmed that the composite filler had a complementary effect on thermal aging.

Stress-Strain Behavior Characteristics of Concrete Cylinders Confined with FRP Wrap (FRP로 횡구속된 콘크리트의 응력-변형률 거동 특성)

  • Lee, Dae-Hyoung;Kim, Young-Sub;Chung, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.135-144
    • /
    • 2007
  • Recently, fiber-reinforced plastic(FRP) wraps are blown as an effective material for the enhancement and rehabilitation of aged concrete structures. The purpose of this investigation is to experimentally investigate behavior of concrete cylinder wrapped with FRP materials. Experimental parameters include compressive strength of concrete cylinder, FRP material, and confinement ratio. This paper presents the results of experimental studies on the performance of concrete cylinder specimens externally wrapped with aramid, carbon and glass fiber reinforced Polymer sheets. Test specimens were loaded in uniaxial compression. Axial load, axial and lateral strains were investigated to evaluate the stress-strain behavior, ultimate strength ultimate strain etc. Test results showed that the concrete strength and confinement ratio, defined as the ratio of transverse confinement stress and transverse strain were the most influential factors affecting the stress-strain behavior of confined concrete. More FRP layers showed the better confinement by increasing the compressive strength of test cylinders. In case of test cylinders with higher compressive strength, FRP wraps increased the compressive strength but decreased the compressive sham of concrete test cylinders, that resulted in prominent brittle failure mode. The failure of confined concrete was induced by the rupture of FRP material at the stain, being much smaller than the ultimate strain of FRP material.

Axial behavior of FRP-wrapped circular ultra-high performance concrete specimens

  • Guler, Soner
    • Structural Engineering and Mechanics
    • /
    • v.50 no.6
    • /
    • pp.709-722
    • /
    • 2014
  • Ultra-High Performance Concrete (UHPC) is an innovative new material that, in comparison to conventional concretes, has high compressive strength and excellent ductility properties achieved through the addition of randomly dispersed short fibers to the concrete mix. This study presents the results of an experimental investigation on the behavior of axially loaded UHPC short circular columns wrapped with Carbon-FRP (CFRP), Glass-FRP (GFRP), and Aramid-FRP (AFRP) sheets. Six plain and 36 different types of FRP-wrapped UHPC columns with a diameter of 100 mm and a length of 200 mm were tested under monotonic axial compression. To predict the ultimate strength of the FRP-wrapped UHPC columns, a simple confinement model is presented and compared with four selected confinement models from the literature that have been developed for low and normal strength concrete columns. The results show that the FRP sheets can significantly enhance the ultimate strength and strain capacity of the UHPC columns. The average greatest increase in the ultimate strength and strain for the CFRP- and GFRP-wrapped UHPC columns was 48% and 128%, respectively, compared to that of their unconfined counterparts. All the selected confinement models overestimated the ultimate strength of the FRP-wrapped UHPC columns.

Flexural Strengthening Effects of RC Beam Reinforced with Pre-stressing Plate (긴장을 가한 보강 플레이트로 보강된 RC 보의 휨보강 효과)

  • Ha, Sang-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.171-178
    • /
    • 2019
  • Fiber-reinforced polymer (FRP) composites have proved to be reliable as strengthening materials. Most of existing studies used single types of FRP composites. Therefore, in this experimental study, carbon FRP sheet, aramid FRP sheet, and hybrid FRP plate including glass fibers were fabricated, and the effect of pre-stressed FRP composites on flexural strengthening of reinforced concrete (RC) beams was investigated. In total, eight RC beam specimens were fabricated, including one control beam (specimen N) without FRP composites and seven FRP-strengthened beams. The main parameters were type of FRP composite, the number of anchors used for pre-stressing, and thickness of FRP plates. As a result, the beam strengthened with pre-stressed FRP plate showed superior performance to the non-strengthened one in terms of initial strength, strength and stiffness at yielding, and ultimate strength. As the number of anchors and thickness of FRP plate (i.e., amount of FRP plates) increased, the strengthening effect increased as well. When hybrid FRP plates were pre-stressed, the strengthening effect was higher in comparison with pre-stressed single type FRP plate.