• Title/Summary/Keyword: arabinose

Search Result 429, Processing Time 0.021 seconds

Comparative Analysis of Tagatose Productivity of Immobilized L-Arabinose Isomerase Expressed in Escherichia coli and Bacillus subtilis

  • Cheon, Ji-Na;Kim, Seong-Bo;Park, Seong-Won;Han, Jong-Kwon;Kim, Pil
    • Food Science and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.655-658
    • /
    • 2008
  • Although arabinose isomerase (E.C. 5.3.1.4), a commercial enzyme for edible tagatose bioconversion, can be expressed in an Escherichia coli system, this expression system might leave noxious by-products in food. To develop an eligible tagatose bioconversion with food-safe system, we compared the tagatose production activity of immobilized arabinose isomerase expressed in Bacillus subtilis (a host generally recognized as safe) with that of the enzyme expressed in E. coli. A 48% increase in tagatose production (4.3 g tagatose/L at $69.4\;mg/L{\cdot}hr$) was found using the B. subtilis-expressed immobilized enzyme system, compared to the E. coli-expressed enzyme system (2.9 g tagatose/L). The increased productivity with safety of the B. subtilis-expressed arabinose isomerase suggests that it is a more eligible candidate for commercial tagatose production.

Changes of Sugar Components in Cell Wall Polysaccharides from Tomato Fruits during Ripening (토마토 과실의 성숙중 세포벽 구성다당류의 변화)

  • Mun, Gwang-Deok;Cheon, Seong-Ho;Kim, Jong-Guk
    • Food Science and Preservation
    • /
    • v.3 no.2
    • /
    • pp.113-120
    • /
    • 1996
  • This study was conducted to understand the characteristics of fruit softening during ripening which causes deep loses in quality of horticultural products during storage and marketing process after harvest. The changes of cell wall components during ripening was investigated. The climacteric rise was between 42 and 49 days after anthesis and then decreased. Ethylene evolution was similar to respiration. The hardness of fruit decreased markedly at this climacteric period and significances of textural parameters among the ripening periods were recognized but the significance between 50 and 55 days after anthesis was not. Sugar components of cell wall polysaccharides were uronic acid, galactose, glucose, arabinose, xylose, rhamnose, mannose and fucose. The contents of arabinose and mannose in alcohol-insoluble solids fraction increased, but other sugars were not changed. In cell wall fraction, the contents of uronic acid, galactose, glucose and arabinose were comparatively high, but galactose, arabinose and ironic acid were decreased markedly during ripening. ironic acid occupied above 75% of total monosaccharide in pectin fraction and decreased markedly during ripening. In acid-soluble hemicellulose fraction, the contents of uronic acid, glucose, galactose and rhamnose were high and they decreased from 50 days after anthesis. The contents of glucose and xylose were high in a alkali-soluble hemicellulose fraction and they decreased markedly at 55days after anthesis.

  • PDF

Changes on the Components of Free Polysaccharide from Cell Wall of Persimmon Fruit by Treatments of Cell Wall Degrading Enzymes (세포벽분해효소의 처리에 따른 감과실의 세포벽 유리 다당류의 변화)

  • 신승렬;김미현
    • Food Science and Preservation
    • /
    • v.2 no.1
    • /
    • pp.173-183
    • /
    • 1995
  • This paper was carried out to investigate changes in chromatograms of polysacctatides and soluble pectins on Sephadex G-50 and non-cellulosic neutral sugars of polysaccharides isolated from cell wall of persimmon fruits treated with polygalacturonase and $\beta$-galactosidase in vitro. The chromatogram pattern of soluble pectins extracted from cell wall treated with $\beta$-galactosidase on Sephacryl S-500 column were similar to those of untreatment, but contents of soluble pectins treated with $\beta$-galactosidase were different from those of untreatment. The patterns of chromatograms In soluble pectins extracted from cell wall treated with polygalacturonase were more complex and lower molecular polymer than those of other cell wall-degrading enzyme treatments. Non-cellulosic neutral sugar of polysaccharides in fraction I of soluble material treated with polygalacturonase was rhamnose, those in fraction II were similar to those in fraction III and contents of arabinose, xylose and glucose were higher than contents of other non-cellulosic neutral sugars. Non-cellulosic neutral sugars of polysaccharides in fraction I in soluble material by $\beta$-galactosidase treatment were rhamnose, arabinose, galactose and mannose. Content of glucose of polysaccharides in fraction II was higher than that in fraction I . Non-cellulosic neutral sugars treated with mixed enzyme were rhamnose, fucose, arabinose, xylose, mannose, galactose and glucose. Compositions of non-cellulosic neutral sugars of polysaccharides in fraction I were similar to those in fraction II and III.

  • PDF

Studies on the Components of Unripe Peaches (미숙 복숭아의 성분 연구)

  • Lee, Joo-Baek;Chung, Hun-Sik
    • Food Science and Preservation
    • /
    • v.15 no.1
    • /
    • pp.79-83
    • /
    • 2008
  • This work measured the approximate levels of chemical components in the fleshpeel of unripe peaches picked at different times. The unripe samples were divided into two groups. Group I was picked on April 20 and Group II on May 2. Both samples were analyzed for organic acids, free sugars, Brix values, acidity, amino acids, and minerals. The major organic acid contents in Group I and Group II samples were oxalic acid> citric acid> malic acid> tartaric acid. The order of major free sugarin Group I and Group II samples were arabinose> sucrose in flesh and arabinose> glucose> sucrose in peel. The order of amino acid levels in all samples was aspartic acid> proline> glutamic acid> serine> leucine> lysine. The Brix values, acidity levels, and pH values of all samples were in the ranges of $7.6-9.8^{\circ}Brix$, 0.50-0.55 % and 4.13-4.17, respectively. The order of mineral content in all samples was K> Ca> Mg> Na.

Changes of Monosaccharides Contents in Hydrolysates of Decomposing Plant Residues (식물성(植物性) 유기물질(有機物質)의 부숙과정중(腐熟過程中) 단당류(單糖類)의 함량(含量) 변화(變化))

  • Kim, Jeong-Je;Jang, Yong-Seon;Shin, Young-Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.23 no.1
    • /
    • pp.21-25
    • /
    • 1990
  • The amounts of monosaccharides in acid hydrolysates of decomposing plant residues under laboratory conditions were determined. Straw of cereal rice and barley, wild grass cutting, and litters of deciduous and coniferous forest trees were treated to decompose for 90 days. Samples for the analysis of mono-saccharides were taken at 3 different periods of incubation. 1. Fractions of monosaccahrides in plant residues steadily decreased with the time of decomposition. In some samples there appeared an intermediate stages where the fractions reached the highest level. 2. Decomposition of barley straw occured at a faster rate than that of rice straw, and so did the decomposition of deciduous litter than that of coniferous litter. 3. Cereal crop residues of rice and barley were richer in monosaccharides than residues of wild grass cutting and forest litters. 4. Distiction between monosaccharides of plant origin and those of microbial origin was not possible to make in this study. 5. Glucose was the predominent monosaccharide and fucose was the monosaccharide contained in the smallest amount. No measurable ribose was detected from any sample. 6. The relative proportion of galactose in creased with the time of incubation. 7. In general, the proportion of fucose decreased with time and so did that of rhamnose, rhamnose of rice straw residue being the exception. 8. The orders of abundance of monosaccharides after decomposition of 90 days were as the following: in rice straw; glucose > xylose > arabinose > galactose > rhamnose > mannose > fucose, in barley straw; glucose > xylose > arabinose > galactose> mannose > rhamnose > fucose, in wild grass cutting; glucose > xylose > galactose arabinose> rhamnose mannose > fucose, in deciduous litter; glucose > arabinose > xylose galactose > mannose > rhamnose = fucose, and in coniferous litter; glucose > xylose > galactose > arabinose mannose > rhamnose > fucose.

  • PDF

Characterization of Polysaccharides from Artemisia capillaris and Artemisia sylvatica (사철쑥과 그늘쑥의 다당류 연구)

  • 황은주;권학철;정칠만;문형인;김선여;지옥표;이강노
    • YAKHAK HOEJI
    • /
    • v.43 no.4
    • /
    • pp.423-428
    • /
    • 1999
  • Two polysaccharides, ACP-UMP and ACP-ULF, were purified from the aerial part of Artemisia capillaris by anion-exchange chromatography, ultrafiltration, and gel filtration chromatography. The polysaccharides appeared to be homogenious from the results of HPLC. The molecular weights of ACP-UMF and ACP-ULF were estimated to be 16305.92 D and 3292.26 D, respectively, by MALDI-TOF MS. The sugar compositions were determined by GC to be arabinose 10.05%, xylose 1.67%, mannose 5.45G, galactose 39.06%, glucose 15.43% for ACP-UMF and arabinose 11.60%, xylose 11.15%, mannose 6.37% galactose 32.47%, glucose 18.35% for ACP-ULF. A polysaccharide, SP-M was determined to be 2462.52 D by MALDI-TOF MS. SP-M consisted mainly of rhamnose 36.49%, arabinose 29.00%, and glucose 19.38%. Incubation of CCl4-intoxicated hepatocytes with ACP-UMF reduced the levels of glutamic pyruvic transaminase (GPT) and cellular malondialdehyde (MDA) to 62.8% and 23.8%. ACP-ULF also reduced the levels of GPT and MDA to 46.1% and 38.1% and 26.3%, respectively.

  • PDF

The optimum conversion efficiency in nile blue arabinose system by photogalvanic cell

  • Lal, Mohan;Gangotri, K.M.
    • Advances in Energy Research
    • /
    • v.3 no.3
    • /
    • pp.143-155
    • /
    • 2015
  • The Nile blue has been used as a photosensitizer with Arabinose as a reductant in photogalvanic cell for optimum conversion efficiency and storage capacity. Reduction cost of the photogalvanic cell for commercial utility. The generated photopotential and photocurrent are 816.0 mV and $330.0{\mu}A$ respectively. The maximum power of the cell is $269.30{\mu}W$ where as the observed power at power point is $91.28{\mu}W$. The observed conversion efficiency is 0.6095% and the fill factor 0.2566 has been experimentally found out at the power point of the photogalvanic cell, whereas the absolute value is 1.00. The photogalvanic cell so developed can work for 120.0 minutes in dark if it is irradiated for 200.0 minutes that is the storage capacity of photogalvanic cell is 60.00%. The effects of different parameters on the electrical output of the photogalvanic cell have been observed. A mechanism has also been proposed for the photogeneration of electrical energy.

Studies on the Mucilage of the Root of Abelmoschus manihot, MEDIC -[Part II] Detection of Sugars in the Mucilage- (황촉규근(黃蜀葵根) 점액(粘液)에 관(關)한 연구(硏究) -[제2보(第二報)] 점액내(粘液內) 당류(糖類)의 검색(檢索)-)

  • On, Doo-Heayn;Im, Zei-Bin;Sohn, Joo-Hwan
    • Applied Biological Chemistry
    • /
    • v.19 no.1
    • /
    • pp.41-50
    • /
    • 1976
  • When the root of Abelmoschus manihot, MEDIC is stored in the water, the mucilage is extracted. The mucilage has contained some of free reducing sugars. We have investigated the change of free reducing sugars by the Bertrand method and also free reducing sugars are detected by paper chromatography and thin layer chromatography. The mucilage is isolated from the root of Abelmoschus manihot, MEDIC and its chemical components are detected. The mucilage and hydrolyzed products are examined by paper chromatography, thin layer chromatography and tested carbohydrates under the usual way. The results are as follow: 1. The mucilage has contained five kinds of monosaccharides which are rhamnose, xylose, arabinose, glucose, galactose and other three kinds of uronic acids. 2. In the mucilage, glucose is the most changeable sugar and the next are arabinase and galactose. 3. Uronic acids, pylose and rhamnose are remained comparatively longer than glucose, galactose and arabinose in the mucilage. 4. The hydrolyzed products of mucilage consisted of rhamnose, xylose, arabinose, glucose, gelactose, ribose, some uronic acids and other unknown compounds. 5. The essence of mucilage isolated from the root of Abelmoschus manihot, MEDIC is complex saccharide, glucose and ribose are newly certified. 6. We can guess that the components of the mucilage are rhamnose, xylose, arabinose, glucose, ribose, uronic acids and other unknown compounds.

  • PDF

Structure Analysis of Water-soluble Polysaccharides Extracted from The Unripe Fruit of Cudrania tricuspidata (꾸지뽕나무 열매에서 추출한 수용성 다당류의 구조분석)

  • Kim, Seok Ju;Lee, Kyung-Tae;Youe, Won-Jae;Lee, Sung-Suk;Kim, Yong Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.6
    • /
    • pp.740-746
    • /
    • 2014
  • The unripe fruit of cudrania tricuspidata was extracted with 50% ethanol. The crude water-soluble extracts were separated by liquid-liquid separation with n-hexane, ethyl acetate and butanol followed by precipitation with ethanol, and then the water-soluble polysaccharide (F1) was isolated by the fractionation through gel permeation chromatography using preparative PLaquagel-OH column with water. The structure was characterized by monosaccharide composition with HPAEC-PAD, methylation analysis with GC-MS, FT-IR and HPLC. According to the data, F1 was com posed of glucose (22.84 mM), galactose (13.75 mM), arabinose (45.87 mM), xylose (7.49 mM). It was revealed which uronic acid and acetyl group were not attached in F1. And it is constituted of 1-linked arabinose, 1,4-linked arabinose, 1,3-linked glucose, 1,4-linked galactose, 1,4-linked glucose, 1,3,6-linked galactose, 1,3,6-linked glucose and the ratio was showed 1.1 : 1.0 : 4.9 : 7.5 : 3.0 : 3.1 : 1.4 : 1.5.

Characterization of the Immunologically Active Components of Glycyrrhiza uralensis Prepared as Herbal Kimchi

  • Hwang, Jong-Hyun;Lee, Kyong-Haeng;Yu, Kwang-Won
    • Preventive Nutrition and Food Science
    • /
    • v.8 no.1
    • /
    • pp.29-35
    • /
    • 2003
  • A crude polysaccharide fraction (GU-3) from the roots of Glycyrrhiza uralensis (licorice root), a screened herbal plant used in the preparation of herbal kimchi, enhanced Peyer's patch mediated bone marrow cell proliferation and NK cell-mediated tumor cytotoxicity against Yac-1 cells. GU-3 was further purified by DEAE-Sepharose CL-6B yielding fractions designated as GU-3I, and 3IIa∼3IIe. GU-3IIa is mainly composed of arabinose, galactose and galacturonic acid, and showed the highest bone marrow cell proliferation activity. In addition, GU-3IIb had arabinose, galactose, rhamnose and galacturonic acid as the component sugars with a small quantity of protein; GU-3IIb also enhanced activity of NK cell-mediated tumor cytotoxicity. After these fractions were further fractionated via gel filtration on Sepharose CL-6B or Sephacryl S-300, two immunological active polysaccharides, GU-3IIa-2 and 3IIb-1 were purified from the respective fractions. GU-3IIa-2 mostly contained neutral sugars (75%) such as arabinose and galactose (molar ratio; 1.0 : 0.7) in addition to a considerable amount of galacturonic acid (20%), whereas GU-3IIb-1 was composed of arabinose, galactose, rhamnose and galacturonic acid (molar ratio; 0.3 : 0.5 : 0.1 : 1.0). Methylation analysis indicated that GU-3IIa-2 was composed mainly of terminal, 4- or 5-linked and 3,4- or 3,5-branched arabinose, 3-linked, 4-linked and 3,6-branched galactose, and terminal and 4-linked galacturonic acid whereas GU-3IIb-1 contained various glycosidic linkages such as terminal and 4- or 5-linked arabinose, 2,4-branched rhamnose, terminal and 4-linked galactose, and terminal and 4-galacturonic arid. Single radial gel diffusion indicated that only GU-3IIa-2 strongly reacted with β-D-glucosyl-Yariv antigen. These results suggest that bone marrow cell proliferating activity and enhancement of NK cell-mediated tumor cytotoxicity of GU-3 are caused by polysaccharides containing a pectic arabinogalactan (GU-3IIa-2) and pectic polysaccharide (GU-3IIb-1).