• Title/Summary/Keyword: aquifer storativity

Search Result 13, Processing Time 0.019 seconds

Permeability, crossflow and storativity effects in two-layer aquifer system with fractional flow dimension (분할유동차원 2층 대수층에서의 투수성, 층간흐름, 저류성의 효과)

  • 함세영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.81-84
    • /
    • 2000
  • Two-layer aquifer system with fractional flow dimension is composed of contiguous two layers: Layer 1 (lower layer) and Layer 2 (upper layer) with different permeability and specific storage each other. For this aquifer system, we assume that groundwater flow originates only from Layer 1 on the pumping well. The aquifer system considers wellbore storage and skin effects on the pumping well. Dimensionless drawdown curves for different flow dimensions are analyzed for different lambda (λ, crossflow coefficient) values, kappa ($textsc{k}$, permeability ratio between Layer 1 and Layer 2) values and omega ($\omega$, storativity ratio between Layer 1 and Layer 2) values. The curves for Layer 1 and Layer 2 show characteristic trend each other.

  • PDF

On the Generalized Empirical Equation for Effective Wellbore Radius (유효우물반경 산정 경험공식의 일반화에 대하여)

  • Choi, Byong-Soo
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.3
    • /
    • pp.15-20
    • /
    • 2008
  • The investigation on the previous paper(Jn. of KoSSGE vol.12, no.3), which proposed three empirical equations for the different aquifers was carried out. To draw out a single equation from the three different equations the mean value of the involution factors was adopted allowing different proportional coefficients for the different aquifers. On the other hand it was found that the square root value of storativity ratio, ${\sqrt{{S_p}/{S_o}}}$ in each well is almost equal to its wellbore radius ratio, ${r_e}/{r_w}$. From this fact, the proportional coefficients can be substituted with assumed aquifer storativity and a generalized empirical equation for the effective wellbore radius has been derived.

GIS를 이용한 영산강 유역의 지하수의 산출특성

  • Seo Gu-Won;Park Bae-Yong;Jeong Chan-Deok
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.61-64
    • /
    • 2005
  • The calculated characteristics of groundwater within the Youngsan river basin are : casing depth-17.1m, well depth-74.8m, natural water-2.6m, pumping water-43.9m, yields-391$m^3/D$, transmissivity-16.3$m^3/D/m$, storativity-0.068. As far as hydrogeological units are concerned, in casing depth, weathered granites are deepest followed by gneiss, volcanics, and sediments. In major aquifer development areas, sediments are deepest followed by volcanics, granites and gneiss in more shallow areas, Altogether, the major aquifar development depth of the Youngsan river basin is within the $35{\sim}60m$ range.

  • PDF

A Study of Carvernous Limestone Aquifer of Jeon Cheon Basin (전천 석회암 대수층에 관한 연구)

  • 한종상
    • Water for future
    • /
    • v.16 no.3
    • /
    • pp.171-179
    • /
    • 1983
  • In the Jeon Cheon Basin, unconsolidated alluvium and marine clay beds overlying Tertiary conglomerate and impermeable mudstone, and Cambro-Ordovician sedimentary rocks composed of mainly cavernous limestones, and age-unknowned crystalline rocks are occured. Most productive rock is Cambro-Ordovician limestones containing a lot of solution openings and secondary porosities and shows its transmissivity of 1836$m^2$/day and storativity of 1.47 $\times$ $10^{-3}$. The storage of deep seated groundwater in linestone aquifer is estimated about 1059 $\times$ $10^6$ metric tons, being equivalent to 6 years total precipitation of the basin. The safe yield of the groundwater to be abstracted from the aquifer is about 126,000 tons/day. To pump at least 100,000 tons/day of groundwater from the said aquifer, a well field comprising 34 deep wells ranging in depth from 80 to 100 meter and penetrating the cavernous limestone aquifer shall be established at middle and down stream area.

  • PDF

Hydrologic Characterization through Ground Water Monitoring in a Coastal Aquifer (해안 대수층에서 지하수 장기 모니터링을 통한 수리 특성 조사)

  • Shim, Byoung-Ohan;Lee, Chol-Woo
    • Economic and Environmental Geology
    • /
    • v.44 no.3
    • /
    • pp.239-246
    • /
    • 2011
  • Groundwater in small islands is used as main water resource but the overuse of groundwater may cause seawater intrusion and temperature decrease in geothermal wells. This study aimed to characterize the hydrogeology of Maeum-ri area in Seokmo Island of Ganghwagun using long-term monitoring at groundwater wells and geothermal wells. In the monitoring period seasonal water level change, consistent drop or increase of water levels are not detected. The groundwater temperature about 10m below ground surface shows year cycle variation having two to five months difference with ambient temperature cycle. The storativity was calculated by tidal method. The storativity estimated by adapting tidal efficiency factor showed some larger values than that by using tidal time lag. The result suggested that the tidal method assuming several assumptions on aquifer condition may produce broad ranges but the calculated ranges at this application are reasonable. The similar shape of groundwater level change and tidal effects was observed at several wells clustered east-south-east direction which may implicate the distribution of vertical fracture system strongly related with groundwater flow channels. The applied methodology and study results will bc valuable to evaluate optimal pumping rate for the preservation of groundwater resources, and to manage geothermal development.

Integrated Surface-Groundwater Hydrologic Analysis for Evaluating Effectiveness of Groundwater Dam in Ssangcheon Watershed (쌍천 지하댐의 효용성 평가를 위한 지표수-지하수 통합 수문해석)

  • Kim, Nam-Won;Na, Han-Na;Chung, Il-Moon
    • Economic and Environmental Geology
    • /
    • v.44 no.6
    • /
    • pp.525-532
    • /
    • 2011
  • In this study, the usefulness of underground dam as a means for the sustainable development of groundwater, and its performance in the management of groundwater resources were analyzed. The fully integrated SWAT-MODFLOW was applied to the Ssangcheon watershed in Korea to evaluate the effectiveness of groundwater dam construction. After construction, the groundwater level raised in the upstream area of groundwater dam while lowered in the downstream area. Also, it is shown that the exchange rate of river-aquifer interactions increased in the upper area of the dam. Since the storage capacity of the aquifer largely increased in the upper area of the dam, the exploitable groundwater could be greatly increased as much. This study demonstrated that a groundwater dam was a very useful measure to increase the available storativity of groundwater aquifers. It also represented that the combined analysis using SWAT-MODFLOW was helpful for the design and opeation of groundwater dam in the Ssangcheon watershed.

Characterization of Area Installing Combined Geothermal Systems : Hydrogeological Properties of Aquifer (복합지열시스템에 대한 부지특성화: 대수층의 수리지질학적 특성)

  • Mok, Jong-Koo;Park, Yu-Chul;Park, Youngyun;Kim, Seung-Kyum;Oh, Jeong-Seok;Seonwoo, Eun-Mi
    • The Journal of Engineering Geology
    • /
    • v.27 no.3
    • /
    • pp.293-304
    • /
    • 2017
  • This study was performed in order to hydrogeological analysis of aquifer, which is a necessary part for evaluating the efficiency of the combined well and open-closed loops geothermal (CWG) systems. CWG systems have been proposed for the effective utilization of geothermal energy by combining open loop geothermal systems and closed loop geothermal systems. Small aperture CWG systems and large aperture CWG systems were installed at a green house land with water curtain facilities in Chungju City. Aquifer tests include pumping tests and step-drawdown tests were conducted to analyse hydrogeological characteristics of aquifer in the study area. The transmissivity was estimated in the range of $13.49{\sim}58.99cm^2/sec$, and the storativity was estimated in the range of $1.13{\times}10^{-5}{\sim}5.20{\times}10^{-3}$. The geochemical analysis showed $Ca^{2+}$ ion and ${HCO_3}^-$ ion were dominant in groundwater. The Langelier Saturation Index and the Ryznar Stability Index showed low scaling potential of groundwater. In the analysis of vertical water temperature change, the geothermal gradient was estimated as $2.1^{\circ}C/100m$, which indicated the aquifer was enough for geothermal systems. In conclusion, groundwater is rich, can stably use geothermal heat, and it is less likely to cause deterioration of thermal energy efficiency by precipitation of carbonate minerals in study area. Therefore, the study area is suitable for installation of the combined geothermal system.

Assessment of Effects of Groundwater Pumping from Deep Aquifer on Streamflow Depletion (죽산천 주변 암반층 지하수 양수로 인한 하천수 감소 영향 분석)

  • Lee, Jeongwoo;Kim, Nam Won;Chung, Il Moon;Cha, Joon Ho
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.9
    • /
    • pp.769-779
    • /
    • 2015
  • The streamflow depletion due to groundwater pumping from deep aquifer near the Juksan stream has been simulated, in this study, by using the surface water and groundwater integrated model, SWAT-ODFLOW in order to analyze the relationship between the stream depletion and hydraulic properties of aquifer and streambed, and to spatially assess the streamflow depletion. The simulated results showed that the streamflow depletion rate divided by the pumping rate for each well location ranges from 10% to 90% with reflecting the various well-stream distance, transmissivity, storativity, and streambed hydraulic conductance. In particular, the streamflow depletion exceeds about 50% of pumping rate for conditions with transmissivity higher than $10m^2/day$ or storage coefficient lower than 0.1. The simulated results in the form of spatial maps indicated that the spatially averaged percent depletion of streamflow is about 53.6% for five years of pumping which is lower than that for shallow aquifer pumping by 12.9%. From the spatially distributed stream depletion, it was found that higher and more rapid stream depletion to pumping occurs near middle-downstream reach.

Standard Procedures and Field Application Case of Constant Pressure Injection Test for Evaluating Hydrogeological Characteristics in Deep Fractured Rock Aquifer (고심도 균열암반대수층 수리지질특성 평가를 위한 정압주입시험 조사절차 및 현장적용사례 연구)

  • Hangbok Lee;Chan Park;Eui-Seob Park;Yong-Bok Jung;Dae-Sung Cheon;SeongHo Bae;Hyung-Mok Kim;Ki Seog Kim
    • Tunnel and Underground Space
    • /
    • v.33 no.5
    • /
    • pp.348-372
    • /
    • 2023
  • In relation to the high-level radioactive waste disposal project in deep fractured rock aquifer environments, it is essential to evaluate hydrogeological characteristics for evaluating the suitability of the site and operational stability. Such subsurface hydrogeological data is obtained through in-situ tests using boreholes excavated at the target site. The accuracy and reliability of the investigation results are directly related to the selection of appropriate test methods, the performance of the investigation system, standardization of the investigation procedure. In this report, we introduce the detailed procedures for the representative test method, the constant pressure injection test (CPIT), which is used to determine the key hydrogeological parameters of the subsurface fractured rock aquifer, namely hydraulic conductivity and storativity. This report further refines the standard test method suggested by the KSRM in 2022 and includes practical field application case conducted in volcanic rock aquifers where this investigation procedure has been applied.

Hydrogeology and Vulnerability of Groundwater Contamination of a Mountainous Area in Kangwon Province (강원도 흥호리 지역 암반대수층의 수리지질 및 지하수 오염취약성 예비조사)

  • 이진용;이강근;정형재;배광옥
    • The Journal of Engineering Geology
    • /
    • v.10 no.1
    • /
    • pp.27-38
    • /
    • 2000
  • We hydrogeologically studied a mountainous area and its vulnerability to groundwater contamination. Groundwater flow and recharge occur mainly through a network of fractures in this areaTransmissivity and storativity obtained from slug, slug interference, and pumping tests range from 3.2$\times$10$^{-3}$ to 2.0$\times$10$^{-2}$$m^2$/min and 1.3$\times$10$^{-7}$ to 9.15$\times$10$^{-4}$, respectively. The groundwater was contaminated bylivestock activities in the upgradient. The groundwater in the downgradient residential area wasthreatened by the upgradient livestock activities.

  • PDF