• Title/Summary/Keyword: aqueous system

Search Result 1,124, Processing Time 0.034 seconds

The Preparation of porous ceramic material from aluminum waste dross (알루미늄 廢드로스를 活用한 세라믹 多孔體의 製造)

  • Kim, Ki-Seok;Park, Jay-Hyun;Park, Jai-Koo
    • Resources Recycling
    • /
    • v.14 no.2
    • /
    • pp.19-27
    • /
    • 2005
  • The recycling possibility of aluminum waste dross(AWD) as a ceramic raw material of porous light-weight material was examined. A aluminum waste dross was washed 4-7 consecutive times and roasted at 900$^{\circ}% for 1hour as pre-treatments. The properties of the pre-treatment of aluminum waste dross was investigated. It was conformed by XRD result that the spinel crystalline was grown in AWD, after roasting. After the roasted AWD was ground in aqueous state, the sodium hexaphosphate(SHP) as a dispersant which is used for stabilizing the concentrated slurry was added to the AWD slurry. The porous material was prepared by slurry foaming method with surfactant at room temperature. The foamed slurry volumes were 2 and 3 times of the original slurry volume. The properties of porous material with extended volume of 3 times was following: the porosity was about 84%, bulk density was 0.59 g/cm$^3$, the range of pore was from 50 ${\mu}m$ to 500 ${\mu}m$ and mean pore size was about 200 ${\mu}m$. AWD porous material was sintered at 1150$^{\circ}C-1250$^{\circ}C. It was colcluded that AWD was sintered well at 1200$^{\circ}C from material surface observation by SEM.

The heat transfer characteristics of viscoelastic non-newtonian fluids in the entrance region of circular tube flows (원형관속을 유동하는 점탄성 유체의 입구 영역 열전달 특성에 관한 연구)

  • 엄정섭;황태성;유상신
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.1032-1043
    • /
    • 1989
  • The heat transfer characteristics of the drag reducing polymer solutions are investigated experimentally in the thermal entrance region of circular tube flows. Fluids used in experiments are the aqueous solutions of high molecular polymer, polyacrylamide Separan AP-273 and the range of polymer concentrations is from 20 to 1000 wppm. Two stainless steel tubes with inside diameter 8.5mm(L/D=712) and 10.3mm(L/D=1160) are used for the heat transfer flow loops. The flow loop is set up to measure friction factors and heat transfer coefficients of test sections in two different modes; the recirculating flow system and once-through flow system. The test tubes are heated directly by electricity to apply the constant heat flux boundary conditions to the wall. Three different types of adaptors are used to observe the effects of the upstream flow conditions of the heat transfer test sections. The viscosity and characteristic relaxation time of the test fluids circulating in the flow system are measured by the capillary tube viscometer and falling ball viscometer at regular time intervals. The installed adaptors exhibit slight effect on the entrance heat transfer of Newtonian fluid. However, no noticeable effects are observed for the entrance heat transfer of the drag reducing fluids. The order of magnitude of the thermal entrance lengths of the drag reducing fluids which follow the minimum friction asymptote is much longer than that of Newtonian fluids in turbulent flows. A new dimensionless parameter, the viscoelastic Graetz number, is defined and all the experimental data are recasted in terms of the viscoelastic Graetz number. The local Nusselt number of the viscoelastic fluids is represented as a function of flow behavior index n and the viscoelastic Graetz number. As degradation continues the viscosity and the characteristic relaxation time of the testing fluids decrease. Weissenberg number defined by the relaxation time and D/V appears to be a proper dimensionless parameter in describing degradation effects on heat transfer of the viscoelastic fluids.

Numerical study on the foam spraying for AFDSS applicable to initial fire suppression in large underground spaces (지하대공간 초동 화재진압에 적용가능한 자율형 소화체계의 폼 분사 해석 기법 연구)

  • Park, Jinouk;Yoo, Yongho;Kim, Whiseong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.503-516
    • /
    • 2021
  • Autonomous fire detection and suppression system requires advanced technology for complex detection technology and injection/control technology for accurate hitting by fire location. Also, foam spraying should be included to respond to oil fires. However, when a single spray monitor is used in common, water and foam spray properties appear different, so for accurate fire suppression, research on the spray trajectory and distance will be required. In this study, experimental studies and numerical analysis studies were combined to analyze the foam spray characteristics through the spray monitor developed for the establishment of an autonomous fire extinguishing system. For flow analysis of foam injection, modeling was performed using OpenFOAM analysis software, and the commonly used foaming agent (Aqueous Film-Forming Foam) was applied for foam properties. The injection distance analysis was performed according to the injection pressure and the injection angle according to the form of the foam, and at the same time, the results were verified and presented through the injection experiment.

The characteristics of aqueous ammonium-adsorption of biochar produced from Sudangrass (수단그라스 Biochar를 적용한 수중 암모니아성 질소(NH4-N) 흡착 특성)

  • Doyoon Ryu;Do-Yong Kim;Daegi Kim
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.2
    • /
    • pp.63-71
    • /
    • 2023
  • Increased nitrogen in the water system has become an important environmental problem around the world, as it causes eutrophication, algae bloom, and red tide, destroys the water system, and undermines water's self-purification. The most common form of nitrogen in the water system is ammonium ion (NH4+), and the largest portion of ammonium ions comes from wastewater. NH4+ is a major contributor to eutrophication, which calls for appropriate treatment and measures for ammonium removal. This study produced biochar by applying Sorghum × drummondii, a type of biomass with a great growth profile, analyzed the adsorption capacity of Sorghum × drummondii biochar produced from the changing carbonization temperature condition of 200 to 400℃ in the ammonium ion range of 10 to 100 ppm, and used the results to evaluate its potential as an adsorbent. Carbonization decomposed the chemical structure of Sorghum × drummondii and increased the content of carbon and fixed carbon in the biochar. The biochar's pH and electrical conductivity showed high adsorption potential for cations due to electrical conductivity as its pH and electrical conductivity increased along with higher carbonization temperature. Based on the results of an adsorption experiment, the biochar showed 54.5% and 17.4% in the maximum and minimum NH4-N removal efficiency as the concentration of NH4-N increased, and higher carbonization temperature facilitated the adsorption of pollutants due to the biochar's increased pores and specific surface area and subsequently improved NH4-N removal efficiency. FT-IR analysis showed that the overall surface functional groups decreased due to high temperature from carbonization.

Sex Steroid Hormone and Ophthalmic Disease (성호르몬과 안질환)

  • Kim, Jin-Ju;Yu, Hyeong-Gon;Ku, Seung-Yup
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.37 no.2
    • /
    • pp.89-98
    • /
    • 2010
  • Sex and its tropic hormones influence the lacrimal system, corneal anatomy and disease, aqueous humor dynamics and glaucoma, crystalline lens and cataract, and retinal disease. Dry eye occurs especially frequently during pregnancy, oral contraceptive use, and after menopause, during which androgen levels decrease. Androgen control development, differentiation, and lipid production of sebaceous glands throughout the body, and androgen deficiency also leads to meibomian gland dysfunction and evaporative dry eye. On the other hand, estrogen causes a reduction in size, activity, and lipid production of sebaceous glands. Sex and its tropic hormones also influence the corneal anatomy and disease, and corneal thickening occurred on the second day of the menstrual cycle and around the time of ovulation and appeared to be related to estrogen levels. Fuchs' dystrophy is more commonly seen in postmenopausal women than men and may be linked to hormonal changes that occur with aging. In addition, overexpression of estrogen and progesterone receptors in the conjunctiva of vernal keratoconjunctivitis patients. Serum progesterone levels also may be associated with intraocular pressure especially in pregnant women, and for the women. For women with cataracts, hormone levels were typical of menopause, and there was a significant negative correlation between estradiol and follicular stimulating hormone levels. In addition, serum testosterone levels are associated with the development of diabetic retinopathy. Although the role of sex hormones on the eye is largely unknown, and the results should be interpreted with caution until replicated, the functions of sex hormones in ocular disease remains to be investigated, because they may be involved in structure and function of the ocular components, which are important in the pathogenesis of ocular disease.

Sewer Decontamination Mechanism and Pipe Network Monitoring and Fault Diagnosis of Water Network System Based on System Analysis (시스템 해석에 기초한 하수관망 오염 매카니즘과 관망 모니터링 및 이상진단)

  • Kang, OnYu;Lee, SeungChul;Kim, MinJeong;Yu, SuMin;Yoo, ChangKyoo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.980-987
    • /
    • 2012
  • Nonpoint source pollution causes leaks and overtopping, depending on the state of the sewer network as well as aggravates the pollution load of the aqueous water system as it is introduced into the sewer by wash-off. According, the need for efficient sewer monitoring system which can manage the sewage flowrate, water quality, inflow/infiltration and overflow has increased for sewer maintenance and the prevention of environmental pollution. However, the sewer monitoring is not easy since the sewer network is built in underground with the complex nature of its structure and connections. Sewer decontamination mechanism as well as pipe network monitoring and fault diagnosis of water network system on system analysis proposed in this study. First, the pollution removal pattern and behavior of contaminants in the sewer pipe network is analyzed by using sewer process simulation program, stormwater & wastewater management model for expert (XP-SWMM). Second, the sewer network fault diagnosis was performed using the multivariate statistical monitoring to monitor water quality in the sewer and detect the sewer leakage and burst. Sewer decontamination mechanism analysis with static and dynamic state system results showed that loads of total nitrogen (TN) and total phosphorous (TP) during rainfall are greatly increased than non-rainfall, which will aggravate the pollution load of the water system. Accordingly, the sewer outflow in pipe network is analyzed due to the increased flow and inflow of pollutant concentration caused by rainfall. The proposed sewer network monitoring and fault diagnosis technique can be used effectively for the nonpoint source pollution management of the urban watershed as well as continuous monitoring system.

Mesoporous Silica-Carbon Composite Membranes for Simultaneous Hydrolysis and Separation of Chiral Epoxide (카본/메조세공 실리카 복합 막을 응용한 키랄 에폭사이드의 가수분해반응과 동시 분리)

  • Choi, Seong Dae;Jeon, Sang Kwon;Park, Geun Woo;Yang, Jin Young;Kim, Geon-Joong
    • Applied Chemistry for Engineering
    • /
    • v.25 no.5
    • /
    • pp.503-509
    • /
    • 2014
  • The carbon/porous silica composite membrane was fabricated in a simple manner, which could be successfully for the simultaneous separation and production of chiral epoxides and 1,2-diols, based on their differences in hydrophilic/hydrophobic natures. The chiral Co(III)-$BF_3$ salen catalyst adopted in the membrane reactor system has given the very high enantioselectivity and recyclability in hydrolysis of terminal epoxides such as ECH, 1,2-EB, and SO. The optically pure epoxide and the chiral catalyst were collected in the organic phase after hydrolysis reaction. The hydrophilic water-soluble 1,2-diol product hydrolyzed by chiral salen diffused into the aqueous phase through the SBA-16 or NaY/SBA-16 silica composite layer during the reaction. The water acted simultaneously as a reactant and a solvent in the membrane system. One optical isomer was obtained with high purity and yield, and furthermore the catalysts could be recycled without observable loss in their activity in the continuous flow-type membrane reactor.

Preparation of Chlorine Dioxide Aqueous Solution by Un-divided Electrochemical Cell using RuO2 anode (RuO2를 양전극으로 사용한 무격막 전해셀에서의 이산화염소수 제조)

  • Kwon, Tae Ok;Park, Bo Bae;Roh, Hyun Cheul;Moon, Il Shik
    • Applied Chemistry for Engineering
    • /
    • v.20 no.3
    • /
    • pp.296-300
    • /
    • 2009
  • Generation of chlorine dioxide ($ClO_2$) was studied by the un-divided electrochemical cell system using $RuO_2$ anode material. Sodium chlorite ($NaClO_2$) was used as a precursor compound of chlorine dioxide. Effect of various operating parameters such as feed solution flow rate, initial solution pH, $NaClO_2$ and NaCl conc., and applied current density on the produced chlorine dioxide concentration and solution pH were investigated in un-divided electrochemical cell system. Produced chlorine dioxide concentration and solution pH were strongly depends on the initial solution pH and feed solution flow rate. Sodium chloride (NaCl) was not only good electrolyte, it was also used as a raw material of chlorine dioxide with $NaClO_2$. Observed optimum conditions were flow rate of feed solution (90 mL/min), initial pH (2.3), $NaClO_2$ concentration (4.7 mM), NaCl concentration (100 mM), and current density ($5A/dm^2$). Produced chlorine dioxide concentration was around 350 mg/L and solution pH was around 3.

Prediction of Absorption Behavior of Carbon Dioxide on Membrane Contactor (분리막 접촉기를 통한 이산화탄소 흡수거동 예측)

  • Cho, In-Gi;Ahn, Hyo-Seong;Hahm, Moon-Ky;Kim, I.H.;Lee, Yong-Taek;Park, You-In;Lee, Kew-Ho
    • Membrane Journal
    • /
    • v.10 no.1
    • /
    • pp.39-46
    • /
    • 2000
  • To predict the absorption behavior of carbon dioxide on membrane contactor, an aqueous potassium carbonate solution as an absorbent. The reversible reactions of carbon dioxide with chemicals were considered, and the physicochemical properties of reaction rate constants, equilibrium constants, solubilities and diffusion coefficients were used as a function of concentration of carbon dioxide and the temperature. A non-wetted mode was also used as an operating condition of the membrane contactor. In these operation conditions, the effect of the following system parameters were studied : the concentration of potassium carbonate, the velocity of the absorbent and the pressure of the mixture gas. The absorption behavior of carbon dioxide caused by a facilitated transport was observed as the increment of the concentration of the absorbent. The absorption rate of carbon dioxide was increased as the absorbent velocity was increased. Furthermore, it was found that the pressure if the mixture gas and the reuse number of absorbent affect severely the absorption rate of carbon dioxide. The absorption behavior was successfully predicted by the computer simulation using the system parameters which are important for design and operation of the membrane contactor.

  • PDF

Chromium(VI) Removal from Aqueous Solution using Acrylic Ion Exchange Fiber (아크릴계 이온교환섬유를 이용한 수중 크롬(VI) 제거)

  • Nam, Aram;Park, Jeong-Ann;Do, Taegu;Choi, Jae-Woo;Choi, Ungsu;Kim, Kyung Nam;Yun, Seong-Taek;Lee, Sanghyup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.3
    • /
    • pp.112-117
    • /
    • 2017
  • Ion exchange fiber, PADD was synthesized by the reaction between PAN based acrylic fiber and DETA with $AlCl_3{\cdot}6H_2O$, and was analyzed by FT-IR and SEM to investigate its characteristics. The experimental results of Cr(VI) removal by PADD were better fitted with Langmuir adsorption isotherm, and the maximum uptake value ($Q_{max}$) was calculated to be 6.93 mmol/g. The kinetic data can be well described by Lagergen pseudo-second order rate model. The Cr(VI) adsorption capacity of PADD was 4.11 mmol/g at pH 2, which shows the effect of pH changes on the removal of Cr(VI). The adsorption selectivity of Cr(VI) was higher than phosphate and As(V). Total ion exchange capacity of PADD was 4.70 mmol/g, which was measured by acid-base back titration.