• Title/Summary/Keyword: aqueous system

Search Result 1,124, Processing Time 0.029 seconds

Separation and Recovery of Cyclodextrin Glucanotransferase Using Aqueous Two-Phase Systems (수성2상계를 이용한 Cyclodextrin Glucanotransferase 분리 및 회수)

  • 김진현;홍승서;이현수
    • KSBB Journal
    • /
    • v.15 no.6
    • /
    • pp.556-559
    • /
    • 2000
  • Cyclodextrin Glucanotransferase(EC 2.4.1.19 : 1,4-${\alpha}$-glucano) transferase, cyclizing; CGTase) can be separated and recovered in an aqueous two-phase system composed of poly(ethylene glycol)(PEG)/dextran and PEG/salt. In an aqueous two-phase system consisting of PEG 35000 (5%) and dextran T2000 (7%), all cell and debris were collected at the interphase. CGTase partitioned to the denser dextran phase at an yield of 83.4%. On the other hand, in an aqueous two-phase system consisting of PEG 35000 (10%) and sodium phosphate (15%), CGTase partitioned to the denser salt phase at an yield of 95.5%. In order to recover CGTase using an aqueous two-phase system, the PEG/salt system proved to be more efficient than the PEG/dextran system in terms of yield and cost.

  • PDF

Optimization of Conditions for Extractive Ethanol Fermentation in an Aqueous Two Phase System (수성이상계 에탄올 추출발효 조건의 최적화에 관한 연구)

  • 김진한;허병기;목영일
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.5
    • /
    • pp.531-537
    • /
    • 1994
  • This study was undertaken with objective of optimizing the conditions of fermentation in an aqueous two-phase system which is composed of polyethylene glycol (PEG) 20000 and crude dextran (Dx). The data were obtained and analyzed using the Box-Wilson's experimental design protocol and the response surface methodology. To reach this end a multilinear polynomial regres- sion model was developed, which can be utilized for the purpose of optimizing the extractive fermentation. Optimum conditions for batch fermentation with aqueous two phase system were found to be at 4.2~5.4% PEG/3.2~4.2% Dx range. The composition of the center was 4.8% PEG/ 3.6% Dx. Optimum operating conditions for initial sugar concentration and fermentation time were approximately 160 g/l, and 21~22 hr, respectively. Fermentation in the aqueous two phase system composed of 5% PEG/4% Dx showed increase of 23% in ethanol concentration, of 9.5% in ethanol yield, and of 19% in ethanol productivity as compared to the case of fermentation of neat Jerusalem artichoke juice.

  • PDF

Effect of Pressurization and Cooling Rate on Dissolution of a Stationary Supercooled Aqueous Solution (정지상태 수용액에서 가압과 냉각속도가 과냉각해소에 미치는 영향)

  • Kim, Byung-Seon;Peck, Jong-Hyun;Hong, Hi-Ki;Kang, Chae-Dong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.12
    • /
    • pp.850-856
    • /
    • 2007
  • In a supercooled or capsule type ice storage system, aqueous solution (or water) may have trouble with non-uniform dissolution though the system contributes to the simplicity of system and ecological improvement. The non-uniform dissolution increases the instability of the system because it may cause an ice blockage in pipe or cooling part. In order to observe the supercooled state, a cooling experiment was performed with pressurization to an ethylene glycol(EG) 3 mass% solution in stationary state. Also, the effect of the pressurization from 101 to 505 kPa to the dissolution of supercooled aqueous solution was measured with the dissolution time of the supercooled aqueous solution at a fixed cooling rate of brine. At results, the dissolution of supercooled point decreased as the pressure of the aqueous solution in the vessel increased. Moreover, the dissolution point increased as the heat flux for cooling increased.

Washing Fastness of PET Fibers according to Supercritical CO2 and Aqueous Dyeing Methods (초임계 CO2 및 수계 염색방법이 적용된 PET 섬유의 세탁견뢰도)

  • Oh, Jiyeon;Park, Changpyo;Kim, Sam Soo;Lee, Jaewoong
    • Textile Coloration and Finishing
    • /
    • v.32 no.4
    • /
    • pp.208-216
    • /
    • 2020
  • In this study, C.I. Disperse Red 60 (DR60), C.I. Disperse Yellow 54 (DY54) dyes were used to investigate the washing fastness characteristics of PET fibers according to supercritical CO2 and aqueous dyeing process. The changes in K/S values and L⁎ values before and after washing of dyed PET fibers were observed according to the KS K ISO 105 washing fastness measurement method. In addition, it was confirmed by changing the ΔE⁎ and ΔL⁎ values of control PET fibers. Overall, it was confirmed that both the supercritical CO2 and aqueous dyeing process had excellent washing fastness ratings of 4-5 for DR60 and DY54 dyes. Comparatively, the K/S and L⁎ values for before and after washing of PET fibers with supercritical CO2 dyeing process was higher than that of the aqueous dyeing process and the ΔE⁎ and ΔL⁎ values of the control PET fibers were low. From the results, we observed that the supercritical CO2 dyeing process of PET fibers has better washing fastness characteristics than the aqueous dyeing process.

The Effect of Solution Pressure to the Release in a Supercooled Aqueous Solution

  • Kang, Chae-Dong;Kim, Byung-Seon;Hong, Hi-Ki
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.17 no.1
    • /
    • pp.25-31
    • /
    • 2009
  • Supercooled type ice storage system with aqueous solution (or water) may have trouble with non-uniform release of supercooling even though it contributes to the simplicity of system and ecological improvement. The non-uniform release increases the instability of the system because it may cause an ice blockage in pipe or cooling part. In order to suppress the release of the supercooling, a cooling experiment was tried to an ethylene glycol(EG) 3 mass% solution corresponding with pressurization. Also, the frequency ratio of the release of the supercooling was measured to the pressurization from 101 to 505 kPa. At results, the frequency ratio of supercooling release tends to decrease as the pressure of the aqueous solution increased in each cooling rate. Moreover, it tends to decrease as the cooling rate of the solution decreased in each pressure.

Cultivation of Digitalis lanata Cell Suspension in an Aqueous Two-Phase System

  • Choi, Yeon-Sook;Lee, Sang-Yoon;Kim, Dong-Il
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.589-592
    • /
    • 1999
  • Suspension cultures of Digitalis lanata were successfully performed in an aqueous two-phase system (ATPS) of 4.5% polyethylene glycol (PEG) 20,000 and 2.8% crude dextran. Cell growth in the medium containing an individual ATPS-forming polymer was inhibited due to the toxicity of PEG and a high viscosity of dextran. Formation of ATPS supported cell growth by showing a considerably decrease in viscosity and partitioning of cells into a PEG-lean dextran phase. It was found that an aqueous two-phase cultivation of plant cells in a stirred tank bioreactor could be successfully applied.

  • PDF

Enhance degradation of insecticide chlorpyrifos by iron salts and potassium persulfate during zerovalent iron treatment in aqueous solution

  • Rahman, M. Mokhlesur;Hwang, Jung-In;Kwak, Se-Yeon;Kim, Jang-Eok
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.4
    • /
    • pp.383-389
    • /
    • 2018
  • Degradation of the insecticide O,O-diethyl O-3,5,6-trichloro-2-pyridyl phosphorothioate (chlorpyrifos) in aqueous solution was investigated using iron salts and potassium persulfate during ZVI treatment through a series of batch experiments. The degradation rate of chlorpyrifos increased with increases in the concentrations of iron salts and potassium persulfate in the aqueous system. Ferric chloride was found to be the most effective iron salt for the ZVI-mediated degradation of chlorpyrifos in aqueous solution. Further, the iron salts tested could be arranged in the following order in terms of their effectiveness: $FeCl_3$> $Fe_2(SO_4)_3$> $Fe(NO_3)_3$. The persulfate-ZVI system could significantly degrade chlorpyrifos present in the aqueous medium. This revealed that chlorpyrifos degradation by treatment with $Fe^0$ was promoted on adding ferric chloride and potassium persulfate. The kinetics of the degradation of chlorpyrifos by persulfate-amended $Fe^0$ was higher than that for iron-salt-amended $Fe^0$. This suggests that using a sequential $Fe^0$ reduction-ferric chloride or $Fe^0$ reduction-persulfate process may be an effective strategy to enhance the removal of chlorpyrifos in contaminated water.

Viscoelastic behavior of aqueous surfactant micellar solutions

  • Toshiyuki Shikata;Mamoru Shiokawa;Shyuji Itatani;Imai, Shin-ichiro
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.3
    • /
    • pp.129-138
    • /
    • 2002
  • A cationic surfactant, cetyltrimethylammonium $\rho$-toluenesufonate (CTA$\rho$TS), forms long threadlike micelles in aqueous solution. The threadlike micelles make concentrated entanglement networks, so that the solution shows pronounced viscoelastic behavior as concentrated polymer systems do. However, a mechanism for a process responsible for the longest relaxation time of the threadlike micellar system is different from that of semi-dilute to concentrated polymer systems. The threadlike micellar system exhibits unique viscoelasticity described by a Maxwell model. The longest relaxation time of the threadlike micellar system is not a function of the concentration of CTA$\rho$TS, but changes with that of $\rho$-toluenesufonate ($\rho$$TS^{-}$) ions in the bulk aqueous phase supplied by adding sodium $\rho$-toluenesulfonate (NapTS). The rates of molecular motions in the threadlike micelles are not influenced by the concentration of $\rho$$TS^{-}$ anions, therefore, molecular motions in the threadlike micelles (micro-dynamics) are independent of the longest relaxation mechanism (macro-dynamics). A nonionic surfactant, oleyldimethylamineoxide (ODAO), forms long threadlike micelles in aqueous solution without any additives. The aqueous threadlike micellar system of ODAO also shows Maxwell type viscoelastic behavior. However, the relaxation mechanism for the longest relaxation process in the system should be different from that in the threadlike micellar systems of CTA$\rho$TS, since the system of ODAO does not contain additive anions. Because increase in the average degree of protonation of head groups of ODAO molecules in micelles due to adding hydrogen bromide causes the relaxation time remarkably longer, changes in micro-structure and micro-dynamics in the threadlike micelle are closely related to macro-dynamics in contrast with the threadlike micellar system of CTA$\rho$TS.

The Effect of Temperature on the Stable Region of Magnesium Ion in Aqueous System (수중 마그네슘이온의 안정영역 변화에 대한 온도효과)

  • Kim, Hee-Jin;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.4
    • /
    • pp.438-444
    • /
    • 2011
  • Magnesium is one of the abundant natural resources in the earth crust and seawater, which is directly related to various organisms activities interconnecting with water-rock system. In aqueous system, magnesium is known to predominantly exist in the form of $Mg^{2+}$ ion which is verified in its $E_h-pH$ diagram. When it is at equilibrium in aqueous system, temperature takes an essential role to complete equilibrium states. This study represents the change of the stable region of magnesium ion according to temperature, and how the consequences would affect aquatic organisms. It was revealed that there is a noticeable tendency shrinking the stable region of magnesium ion in a diagram as temperature increases, and as a result, aquatic bio-species presumably have difficulties to absorb the nutrient. Also, it was considered that the water system would be acidified by decreasing alkalinity.

Effect of pressurization on dissolution of a supercooled aqueous solution with a stationary state (가압조건이 정지상태 과냉각 수용액의 해소에 미치는 영향)

  • Kim, Byung-Seon;Peck, Jong-Hyun;Hong, Hi-Ki;Kang, Chae-Dong
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.132-137
    • /
    • 2006
  • Supercooled type ice slurry system is hard to keep a proper supercooling degree when solution becomes supercooling state. This is the reason of the ice blockage in pipe or cooling part due to an unstable cooling state. In this study, a cooling experiment was performed to pressurized solution in a stationary state. The behaviors during the supercooled aqueous solution were investigated at fixed flow rate of brine and aqueous solution of ethylene glycol 7 mass%. Also the effect to the freezing point of supercooled aqueous solution was investigated to the different pressure 101, 202, 303, and 404 kPa. At results, the pressure of the aqueous solution in the cylinder increased the supercooling degree increased and dissolution of supercooled point decreased.

  • PDF