• Title/Summary/Keyword: aquatic ecosystem monitoring

Search Result 72, Processing Time 0.03 seconds

Acetylcholinesterase Inhibition and Behavioral Changes of Crucian carp (Carassius auratus) Exposed to the Waterborne Parathion (Parathion에 노출된 붕어(Carassius auratus)의 Acetylcholinesterase 억제와 행동변화)

  • Cho, Kyu-Seok;Park, Jong-Ho;Lee, Won-Ho;Kang, Ju-Chan
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.364-369
    • /
    • 2006
  • The investigation of the Acetylcholinesterase (AChE) activity in tissues (brain, eye, muscle and serum) of crucian carp (Carassius auratus) exposed to the waterborne parathion was carried out for application as biomarker of organophosphate pesticides. The AChE activities were significantly inhibited in the experimental organs of C. auratus treated ${\geq}63{\mu}g/L$ of concentrations of parathion. The AChE activity of C. auratus was significantly reduced in response to brain (79.1~92.4%), eye (76.0~91.5%), muscle (89.7~97.6%) and serum (68.9~78.0%) after 30 days exposure. No significant mortality occurred during the experiment duration but behavioral changes occurred in the carp after exposure to the parathion were erratic swimming and convulsions. The anomaly in the carp exposed to parathion were observed in the form of scoliosis. The use of AChE activity and other adverse responses of the carp might be use as a reliable monitoring tool to detect parathion in aquatic ecosystem which might produce significant population changes.

Preliminary study on spatio-temporal variations of five giant and 17 large fish species around the Korean peninsula from 2011 to 2016

  • Kim, Jin-Koo;Kim, Hyung Chul;Ryu, Jung-Hwa;Ahn, Ji-Suk
    • Fisheries and Aquatic Sciences
    • /
    • v.25 no.5
    • /
    • pp.298-310
    • /
    • 2022
  • Although giant and large fish species are highly important as a keystone species in the marine ecosystem, there have been no or few studies on their spatio-temporal variations around the Korean peninsula. For this, we analyzed daily reports made by observers at 57 fishery landing sites in Korea over 6 years, from 2011 to 2016. In total, 153 fish species were re-identified based on photos and descriptions recorded by Korean observers, of which five species were classified as a giant fish over 5 m in maximum total length (MTL) and 17 species as a large fish from 3 m to 5 m MTL according to the data presented by Froese & Pauly (2021). Among the giant and large fish species, Mola mola was the most abundant species, with 75 individuals landed as by-catch. The second most abundant species was Isurus oxyrinchus (31), followed by Mobula mobular (23), Lamna ditropis (17), Masturus lanceolatus (16), Sphyrna zygaena (14), and Prionace glauca (12). As a result of cluster analysis based on the number of individuals of giant and large fish species by year and sea, six years were separated into two clusters (2011-2013 vs. 2014-2016), with high contribution of M. mola, I. oxyrinchus, and M. lanceolatus; and three seas were separated into two clusters (eastern + southern seas vs. western sea), with high contribution of M. lanceolatus, L. ditropis, and I. oxyrinchus. The largest number of M. mola accounted for 64% of the total in 2014 and 2016, and 71% in summer (June-August). It is assumed to have a correlation between seawater temperature fluctuation and the occurrence of giant and large fish species. Our study highlights importance of longterm monitoring of giant and large fish species, and can help to understand the life cycle such as natal or nursery migration of giant and large fish species around the Korean peninsula.

Taxonomic Review of a Rare Butterfly Ray Gymnura japonica (Gymnuridae, Chondrichthyes), in Korea (한국의 희귀 나비가오리[Gymnura japonica (나비가오리과, 연골어강)]의 분류학적 재검토)

  • Kim, Jin-Koo;Ryu, Jung-Hwa;Jang, Seo-Ha;Han, Kyeong-Ho;Kim, Byeong-Yeob
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.1
    • /
    • pp.30-36
    • /
    • 2022
  • We collected a total of four butterfly ray specimens (Gymnura japonica, 213.4-695.0 mm in total length) in Korea from 2016 to 2021 and investigated their morphological and molecular characteristics in order to clarify their taxonomic status. These features are summarized as follows. Disc lozenge-shaped, 1.8-2.0 times broader than long. Tail very short, post-cloaca length 23.9-28.2% in disc width. Snout short, no rostral cartilage. Clasper short, no hook. Dorsal surface uniform yellow or brownish grey, with or without rounded light yellow spots. An analysis of 434 base-pair sequences of mitochondrial DNA cytochrome c oxidase subunit I showed that all four specimens corresponded to G. japonica from Japan (Kimura-2-parameter distance = 0-0.2%), suggesting that the color patterns found may be due to intraspecific color variation. G. japonica resembles Gymnura poecilura but differs in that it has a shorter tail length to disc width (23.9-28.2% in G. japonica vs. 40.1-48.3% in G. poecilura). This study revealed that G. japonica occurred in areas affected by the Tsushima Warm Current, tentatively suggesting that G. japonica may be an indicator species for monitoring marine ecosystem changes due to climate change.

Application of Zooplankton Index for Korean Lake Health Assessment; Verification of Community Index for Lake Assessment Using Multi Metric (호소생태계 건강성 평가를 위한 동물플랑크톤 MMI의 국내 적용 연구)

  • Yerim Choi;Hye-Ji Oh;Hyunjoon Kim;Geun-Hyeok Hong;Dae-Hee Lee;Ihn-Sil Kwak;Chang Woo Ji;Young-Seuk Park;Yong-Jae Kim;Kwang-Hyeon Chang
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.1
    • /
    • pp.70-82
    • /
    • 2023
  • Recently, Korean government has introduced Multi Metric Indices (MMI) using various biocommunity information for aquatic ecosystem monitoring and ecosystem health assessment at the national level. MMI is a key tool in national ecosystem health assessment programs. The MMI consists of indices that respond to different target environmental factors, including environmental disturbance (e.g. nutrients, hydrological and hydraulic situation of site etc.). We used zooplankton community information collected from Korean lakes to estimate the availability of candidate zooplankton MMI indices that can be used to assess lake ecosystem health. First, we modified the candidate indices proposed by the U.S. EPA to suit Korean conditions. The modified indices were subjected to individual index suitability analysis, correlation analysis with environmental variables, and redundancy analysis among indices, and 19 indices were finally selected. Taxonomic diversity was suggested to be an important indicator for all three taxonomic groups (cladoceran, copepod, rotifer), on the other hand, the indices using biomass for large cladocerans and copepods, while the indices using abundance were suggested for small cladocerans and rotifers.

Computation of composite suitability index for fish and macroinvertebrate species in the Gongneung River (공릉천에서의 어류와 저서무척추 동물에 대한 복합 서식처 적합도 지수의 계산)

  • Kim, Seung Ki;Choi, Sung-Uk
    • Ecology and Resilient Infrastructure
    • /
    • v.4 no.2
    • /
    • pp.105-114
    • /
    • 2017
  • This study performed physical habitat simulation for fish and macroinvertebrate species in the Gongneung River. Target fishes were selected as Rhinogobius brunneus and Zacco platypus. Target macroinvertebrate species were selected as Hydropsyche kozhantschikovi and Chironomidae. Habitat suitability curves were constructed by using monitoring data from the monitoring project which is called "the survey and evaluation of aquatic ecosystem health". For calculation of CSI, weighted mean method was used. For macroinvertebrates species, the weighting factor derived from analytic hierarchy method was considered. River2D, which is capable to simulate flow in two-dimensional space, was selected for flow computation. Composite suitability index was simulated for target fish and macroinvertebrate species for discharge of drought, low, normal, and averaged-wet flow. Simulation results show that Chironomidae and Hydropsyche kozhantschikovi prefer the pool and riffle habitat, respectively. Rhinogobius brunneus and Zacco platypus show high suitability in riffle habitat.

Ecological Risk Assessment based on Watershed System Assimilative Capacity in take Texoma, Texas-Oklahoma, USA (유역시스템 정화력을 고려한 생태위해성평가 사례연구: Lake Texoma Watershed (TX&OK, USA)를 대상으로)

  • An, Youn-Joo;Donald H. Kampbell;Guy W. Sewell
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.10a
    • /
    • pp.27-27
    • /
    • 2003
  • Lake Texoma is located on the border of southern Oklahoma and northern Texas. It has 93,000 surface acres, and is a focus of the recreation, and farming industries in the region. There are potential stressors around the Lake Texoma watershed that may cause adverse ecological effects in the lake. System assimilative capacity (SAC) is the ability of abiotic and biotic processes to atteuniate the stressors. SAC Exceeded indicates potential of occuring adverse eco-effects. A number of representative chemical release sites and stressor sources in the surrounding watershed were characterized, and several impact sites having stressors sources, such as being near agriculture, landfills, housing areas, oil production fields and heavy use recreational activity, were selected for surface water, sediment, and groundwater monitoring. A paired reference site, having similar physical characteristics as its impact site, was also chosen based on its proximity to the impact site. Lake water samples were collected at locations identified as marina entrance, gasoline filling station, and boat dock at five marinas selected on Lake Texoma from September 1999 to December 2001. Paired water and sediment samples were also collected. Groundwater samples were collected at about 70 producing monitoring wells. Water quality parameters measured were inorganics (nitrate, nitrite, orthophosphate, ammonia, sulfate, and chloride), dissolved methane, total organic carbon (TOC) (or DOC), volatile organic compounds (VOCs) such as methyl tert-butyl ether (MTBE) and BTEX, and a suite of metals. Biotic communities were evaluated at impact and reference sites. Five basic components were measured; two terrestirial components (plants and bird comminitires) and three aquatic components (benthic inverbrates, litteral-zone fishes, ecosystem attribures). Potential impacts to these comminites were evaluated.

  • PDF

A Non-parametric Trend Analysis of Water Quality Using Water Environment Network Data in Nakdong River (낙동강수계 물환경측정망 자료를 이용한 비모수적 수질 경향 비교 및 분석)

  • Kim, Jungmin;Jeong, Hyungi;Kim, Hyeran;Kim, Yongseok;Yang, Deukseok
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.1
    • /
    • pp.61-77
    • /
    • 2020
  • In South Korea, major public waters have been systematic management under national level. Water environment network has been continuous monitoring for change of aquatic ecosystem, river and reservoir. In Water Quality Monitoring Networks, the data have been generally monitored Per eight days or month, while in Automatic Water Quality Monitoring Network the data have been monitored at daily intervals. Therefore, we were compared and analyzed water quality data between the networks using statistic method for same water quality item. Mann-kendall test results confirm that all points in Water Temperature (WT) and DO were not statistically significant. In particular, the result revealed that there is significant variation of TOC in the four different sites, TN in two different sites, TP in three different sites, WT in seven different sites, pH in two different sites between Water Quality Monitoring Network and Automatic Water Quality Monitoring Network. As a result firm LOWESS, TOC and pH clearly shows different trend. Among different sites, the water quality show the significantly positive correlations between at Sinam-Sangju2 and Namgang-Namgang4. Negative correlation significantly appeared in TP (ADD_Lower-AD1 site), TOC (DG-SG site), pH (GR-GR site), TP (JP-CN) and TN, TP, pH, EC, DO (GC-GC2-1 site).

Overview of UV-B Effects on Marine Algae (자외선이 해조류에 미치는 영향에 관한 고찰)

  • 한태준
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.1
    • /
    • pp.1-9
    • /
    • 1999
  • Numerous observations revealed strong evidence of increased middle ultraviolet radiation or UV-B (280 ~ 320 nm) at the earth's surface resulting from stratospheric ozone depletion. UV is the waveband of electromagnetic radiation which is strongly absorbed by nucleic acids and proteins, thus causing damage to living systems. It has been recorded in the East Sea, Korea that solar UV-B impinging on the ocean surface penetrates seawater to significant depths. Recent researches showed that exposure to UV-B for as short as 2h at the ambient level (2.0 Wm$^{-2}$) decreased macroalgal growth and photosynthesis and destroyed photosynthetic pigments. These may suggest that UV-B could be an important environmental factor to determine algal survival and distribution. Some adaptive mechanisms to protect macroalgae from UV-damage have been found, which include photoreactivation and formation of UV-absorbing pigments. Post-illumination of visible light mitigated UV-induced damage in laminarian young sporophytes with blue the most effective waveband. The existence of UV-B absorbing pigments has been recognized in the green alga, Ulva pertusa and the red alga, Pachymeniopsis sp., which is likely to exert protective function for photosynthetic pigments inside the thalli from UV-damage. Further studies are however needed to confirm that these mechanisms are of general occurrence in seaweeds. Macroalgae together with phytoplankton are the primary producers to incorporate about 100 Gt of carbons per year, and provide half of the total biomass on the earth. UV-driven reduction in macroalgal biomass, if any, would therefore cause deleterious effects on marine ecosystem. The ultimate impacts of increasing UV-B flux due to ozone destruction are still unknown, but the impression from UV studies made so far seems to highlight the importance of setting up long-term monitoring system for us to be able to predict and detect the onset of large -scale deterioration in aquatic ecosystem.

  • PDF

Community Structure of Meiobenthos for Pollution Monitoring in Mariculture Farms in Tongyong Coastal Area, Southern Korea (통영 저도와 장두도 가두리 양식장 퇴적물에 있어서 오염 모니터링을 위한 중형저서생물의 군집구조)

  • KIM Dong Sung;CHOI Sin-Woo;JE Jong-Geel
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.2
    • /
    • pp.217-225
    • /
    • 1998
  • This study was performed to compare the effects of a fish cage on the structure of meiobenthic communities at two locations during May, 1996. The number of meiofaunal taxa at the existing cage site and control site was 15 and 26, respectively. Nematoda was the most dominant group of meiobenthos. Nematoda and Sarcomastigophora comprised more than $90\%$ of total meiofauna at both sites. The total density of control site was 7,702 inds./$10\;cm^{2}$ which is 10 times more than that of fish cage site. The density was highest in the upper 1 cm and decreased with sediment depth. The nematodes/harpacticoid copepods ratio as an index of pollution monitoring for benthic ecosystem at fish cage site was two times higher than at control site. Kinorhyncha known to be sensitive to pollution stress was not found at fish cage site.

  • PDF

Expanding the Substances of Water Quality Standard for the Protection of Human Health Based on Risk Assessment (인체 위해성기반 수질환경기준 항목 확대를 위한 연구)

  • An, Youn-Joo;Nam, Sun-Hwa;Lee, Jae-Kwan
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.1
    • /
    • pp.34-42
    • /
    • 2008
  • Water quality standards (WQS) are mandatory to guarantee the human health and protection of aquatic ecosystems, and maintain the condition of suitable water quality. The present WQS for the protection of human health in Korea contain nine substances (As, Cd, $Cr^{6+}$, CN, Pb, Hg, ABS, organophosphorus compounds and PCBs), but it is insufficient to preserve the human and aquatic ecosystem from a variety of chemicals. Therefore, it is necessary to expand the substance of WQS for the protection of human health. In this study, we chose the 20 chemicals from 43 chemicals of the project entitled 'Development of Integrated Methodology for Evaluation of Water Environment'. The methodology for calculating water quality criteria was amended from the US Environmental Protection Agency (US EPA)'s equation for deriving ambient water quality criteria for the protection of human health. The factors including fish intake, drinking water intake, and human body weight used in the equation reflected Korean situations. The monitoring values were derived from the water quality monitoring data in Korean four main rivers. The orders of priorities of chemicals were evaluated by human health risk assessment, and the proposed WQS was derived by technical and economic analyses. These results were reflected to expand the WQS for the protection of human health.