Acetylcholinesterase Inhibition and Behavioral Changes of Crucian carp (Carassius auratus) Exposed to the Waterborne Parathion

Parathion에 노출된 붕어(Carassius auratus)의 Acetylcholinesterase 억제와 행동변화

  • Cho, Kyu-Seok (Department of Inland Fisheries Research Institute, Chung Cheong Buk-Do) ;
  • Park, Jong-Ho (Department of Environmental Engineering, Chung Ju National University) ;
  • Lee, Won-Ho (Department of Construction & Urban Engineering, Chung Ju National University) ;
  • Kang, Ju-Chan (Department or Aquatic Lire Medicine, Pukyong National University)
  • 조규석 (충청북도내수면연구소) ;
  • 박종호 (충주대학교 환경공학과) ;
  • 이원호 (충주대학교 건설도시공학과) ;
  • 강주찬 (부경대학교 수산생명의학과)
  • Received : 2006.01.09
  • Accepted : 2006.02.07
  • Published : 2006.03.30

Abstract

The investigation of the Acetylcholinesterase (AChE) activity in tissues (brain, eye, muscle and serum) of crucian carp (Carassius auratus) exposed to the waterborne parathion was carried out for application as biomarker of organophosphate pesticides. The AChE activities were significantly inhibited in the experimental organs of C. auratus treated ${\geq}63{\mu}g/L$ of concentrations of parathion. The AChE activity of C. auratus was significantly reduced in response to brain (79.1~92.4%), eye (76.0~91.5%), muscle (89.7~97.6%) and serum (68.9~78.0%) after 30 days exposure. No significant mortality occurred during the experiment duration but behavioral changes occurred in the carp after exposure to the parathion were erratic swimming and convulsions. The anomaly in the carp exposed to parathion were observed in the form of scoliosis. The use of AChE activity and other adverse responses of the carp might be use as a reliable monitoring tool to detect parathion in aquatic ecosystem which might produce significant population changes.

파라치온에 노출된 붕어의 뇌, 안구, 근육 및 혈청의 AChE 활성 변화를 조사한 결과 파라치온 $63{\mu}g/L$ 농도 이상에서 유의하게 감소하는 경향을 보였다. 실험종료 시 AChE 활성은 뇌에서 79.1~92.4%, 안구에서 76.0~91.5%, 근육에서 89.7~97.6% 및 혈청에서 68.9~78.0% 감소하였다. 실험기간동안 유의한 생존율 변화는 관찰되지 않았으나, 유영이상 및 경련을 보였다. 또한 파라치온에 노출된 붕어의 형태변화는 척추측만(scoliosis)이 관찰되었는데 이러한 변화는 파라치온 $190{\mu}g/L$ 농도는 15%, $380{\mu}g/L$에서는 75%로 관찰되었다. 따라서 붕어의 AChE 활성과 그 밖의 행동 및 형태적 특성은 자연수계에서 파라치온 오염을 추정할 수 있는 생물학적 모니터닝 도구로 활용할 수 있다.

Keywords

References

  1. Alabaster, J. S. and Lloyd, R., Water Quality criteria for Fresh-Water Fish, Butterworths, London, pp. 297-298 (1980)
  2. APHA, AWWA and WPCF, Standard Methods for the Examination of Water and Wastewater, 20th ed., American Public Health Association, p. 1532 (1998)
  3. Baier, Ch., Hurle, K. and Kirchhoff, J., Datensammlung zur abschatzung des Gefahrdungspotentials von Pflanzenschutzmiettel- Wirkstoffen fur Gewasser, Paul Parey, Verlag., (1985)
  4. Bradford, M., A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding, Anal. Bichem., 72, pp. 248-254 (1976) https://doi.org/10.1016/0003-2697(76)90527-3
  5. Ceron, J. J., Ferrando, M. D., Sancho, E., Gutierrez-Panizo, C. and Andreu-Mollner, E., Effects of Diazinon Exposure on Cholinesterase Activity in Different Tissues of European Eel (Anguilla anguilla), Ecotoxicol. Environ. Saf., 35, pp. 222-225 (1996) https://doi.org/10.1006/eesa.1996.0102
  6. Coppage, D. L. and Braidech, T. E., River Pollution by Anticholinesterase Agents, Wat. Res., 10, pp. 19-24 (1976) https://doi.org/10.1016/0043-1354(76)90152-4
  7. Coppage, D. L. and Mathews, E., Shorten Effect of Organophosphate Pesticides on Cholinesterase of Estuarine Fishes and Pink Shrimp, Bull. Environ. Contam. Toxicol., 11, pp. 483-487 (1974) https://doi.org/10.1007/BF01685308
  8. Couch, J. A., Winstead, J. T. and Goodman, L. R., Keponeinduced Scoliosis and Its Histological Consequences in Fish, Science, 197(4303), pp. 585-587 (1977) https://doi.org/10.1126/science.69318
  9. Couch, J. A., Winstead, J. T., Hansen, D. J. and Goodman, L. R., Vertebral Dysplasia in Young Fish Exposed to the Herbicide Trifluralin, J. Fish Dis., 2, pp. 35-42 (1979) https://doi.org/10.1111/j.1365-2761.1979.tb00137.x
  10. Deli, E. and Varnagy, L., Teratological Examination of Wofatox 50 EC (50% methylparathion) on Pheasant Embryos, Anat. Anz., 158(3), pp. 237-240 (1985)
  11. Detra, R. L. and Collins, W. J., The Relationship of Parathion Concentration, Exposure Time, Cholinesterase Inhibition and Symptoms of Toxicity in Midge Larvae (Chironomidae: Diptera), Environ. Toxicol. Chem., 10, pp. 1089-1095 (1991) https://doi.org/10.1002/etc.5620100814
  12. Edwards, W. C, Whitenack, D. L., Alexander, J. W. and Solangi, A. A., Selenium Toxicosis in Three California Sea lions (Zalophus califomianus), Vet Hum Toxicol., 31(6), pp. 568-70 (1989)
  13. Ellmann, G. L., Courtney, K. D., Andreas, V. J. and Featherstone, R. M., A New and Rapid Colorimetric Determination of Acetylcholinesterase Activity, Biochem. Pharmacol., 7, pp. 88-95 (1961) https://doi.org/10.1016/0006-2952(61)90145-9
  14. Extonet, http://extoxnet.orst.edu/pips/parathio.htm (1993)
  15. Fernandez-Vega, C., Sancho, E., Ferrando, M. D. and Andreu, E., Thiobencarb Toxicity and Serum AChE Inhibition in the European Eel, J. Environ. Sci. Health B., 34, pp. 61-73 (1999) https://doi.org/10.1080/03601239909373184
  16. Ferrari, A., Venturino, A. and Pechen de D'Angelo, A. M., Time Course of Brain Cholinesterase Inhibition and Recovery Following Acute and Subacute Azinphosrnethyl, Parathion and Carbaryl Exposure in the Goldfish (Carassius auratus), Environ. Environ. Safety, 47, pp. 117-124 (2002)
  17. Harnm, J. T., Wilsonm, B. W. and Hintonm, D. E., Related Articles, Links Organophosphate-Iduced Acetylcholinesterase Inhibition and Embryonic Retinal Cell Necrosis in vivo in the Teleost (Oryzias latipes), Neurotoxicology, 19(6), pp. 853-69 (1998)
  18. Harlin, K. S., Cholinesterase Activity in the Retina with Applications for Use in Postmortem Diagnosis of Organophosphorus Insecticides Poisoning in Animals. Thesis, Univ. Illinois, Urbana (1991)
  19. Heath, A. H., Water Pollution and Fish Physiology. CRC. Press. Inc. Boca Raton, Florida, p. 245 (1995)
  20. Henry, M. G. and Atchinson, G. J., Behavioral Effects of Methylparathion on Social Groups of Bluegill (Lepomis macrochirus), Environ. Toxicol. Chem., 3, pp. 399-408 (1984). https://doi.org/10.1002/etc.5620030305
  21. Hickey, J. F., A Pastoral Approach to Abortion, J. Reprod. Med., 8(6), 355-358 (1972)
  22. Hughes, R. M. and Gammon, J. R., Longitudinal Changes in Fish Assemblages and Water Quality in the Willamette River, Oregon, Transactions of the American Fisheries Society, 116, pp. 196-209 (1987) https://doi.org/10.1577/1548-8659(1987)116<196:LCIFAA>2.0.CO;2
  23. Kennedy, I. J. J. and Sampath, K., Short Term and Long Term Survival Studies in Rana tigrina tadpoles with Reference to Methyl Parathion Toxicity, J. Environ. Bio., 22(4), pp. 267-271 (2001)
  24. Kirby, M. F., Morris, S., Hurst, M., Kirby, J. S., Neall, P., Tylor, T. and Fagg, A., The Use of Cholinesterase Activity in Flounder (Platichthys flesuss Muscle Tissue as a Biomarker of Neurotoxic Contamination in UK Estuaries, Mar. Pollut. Bull., 40(9), pp. 780-791 (2000) https://doi.org/10.1016/S0025-326X(00)00069-2
  25. Kumar, A. and Chapman, J. C., Profenofos Toxicity to the Eastern Rainbow Fish (Melanotaenia duboulayi), Environ. Toxicol. Chem., 17, pp. 1799-1806 (1998)
  26. Lampert, W., Fleckner, W., Pott, E., Schober, U. and Storkel, K.-U., Herbicide Effects on Planktonic Systems of Different Complexity, Hydrobiologia, 188/189, pp. 415-424 (1989) https://doi.org/10.1007/BF00027809
  27. Legierse, K. C. H. M., Verhaar, H. J. M., Vaes, W. H. J., de Bruijn, J. H. M. and Hermens, J. L. M., Analysis of the Time-dependent Acute Aquatic Toxicity of Organophosphorus Pesticides: The Critical Target Occupation Model, Environ. Sci. Technol., 33, pp. 917-925 (1999) https://doi.org/10.1021/es9805066
  28. Matsumura, F., Toxicology of Insecticides, 2nd Edition. Plenum Press, New York, NY, USA (1985)
  29. Mayer, F. L. J. and Ellersieck, M. R., Manual of Acute Toxicity: Interpretation and Data Base for 410 Chemicals and 66 Species of Freshwater Animals, Fish Wildl. Serv., Washington, D. C. p. 505 (1986)
  30. Murty, A. S., Toxicity of Pesticides to Fish, CRC Press, Boca Raton, Florida, p. 143 (1986)
  31. Rand, G. M., The Effect of Subacute Parathion Exposure on the Locomotor Behavior of the Bluegill Sunfish and Largemouth Bass. In: Aquatic Toxicology and Hazard Evaluation, 1st Symposium. Mayer, F. L. and Harnelink, J. L., eds. ASTM STP 634, Philadelphia, PA, pp. 253-268 (1977)
  32. Sancho, E., Ferrando, M. D. and Andreu, E., In vivo Inhibition of AChE Activity in the European Eel, Anguilla anguilla Exposed to Technical Grade Fenitrothion, Comp. Biochem. Physiol., C120, pp. 389-395 (1998)
  33. Sancho, E., Fernandez-Vega, C., Sanchez, M., Ferrando, M. D., and Andreu-Moliner, E., Alterations on AChE Activity of the Fish, Anguilla anguilla as Response to Herbicidecontaminated Water, Ecotoxicol Environ Saf., 46(1), pp. 57-63 (2000) https://doi.org/10.1006/eesa.1999.1873
  34. Straus, D. L. and Chambers, J. E., Inhibition of AcethylchoIinesterase and Al iesterases of Fingerling Channel catfish by Chlorpyrifos, Parathion and S, S, S-tributyl phosphorotrithioate (DEF), Aquat. Toxicol., 33, pp. 311-324 (1995) https://doi.org/10.1016/0166-445X(95)00024-X
  35. USEPA, EFED RED Chapter for Ethyl Parathion PC Code No. 57501; CAS No. 56-38-2 (1999)