• Title/Summary/Keyword: aquatic biomonitoring

Search Result 16, Processing Time 0.023 seconds

Use of the Comet Assay to Assess DNA Damage in Hemocytes and Gill of Oyster(Crassostrea gigas) Exposed to Pyrene and Benzo(a)pyrene (Pyrene과 Benzo(a)pyrene에 노출된 굴의 혈구세포과 아가미 세포에서의 DNA손상 측정을 위한 Comet assay의 이용)

  • 김기범;배세진
    • Journal of Aquaculture
    • /
    • v.16 no.3
    • /
    • pp.196-201
    • /
    • 2003
  • Sessile organisms such as the oyster Crassostrea gigas have been given much attention as a potential biomonitoring indicator to assess the impact of toxicants on aquatic organism. In this study, we exposed cells isolated from gill of oyster (Crassostrea gigas) to hydrogen peroxide in vitro. In addition oysters were in vivo exposed to pyrene and benzo(a)pyrene at various concentrations for 2 weeks. Comet assay was used to detect DNA single strand breaks and to investigate the application of this technique as a tool for aquatic biomonitoring. Hydrogen peroxide increased DNA single strand break with increasing concentration after 30 minutes exposure in vitro. Pyrene and benzo(a)pyrene caused DNA damage only at very high concentration (100 $\mu\textrm{g}$/L or 1000 $\mu\textrm{g}$/L) at two week exposure in vivo. DNA damage was relatively higher at hemocyte than at gill. It suggested that metabolized PAHs are transferred to hemolymph from digestive gland which have a relatively high enzyme activity, and attacked the DNA of hemocyte, while gill accumulated PAHs without degrading them to their metabolites due to low enzyme activity at gill. Both in vitro and in vivo exposure experiments showed that the comet assay is an effective tool on screening whether the organism are exposed to genotoxic contaminants.

Development of a link extrapolation-based food web model adapted to Korean stream ecosystems

  • Minyoung Lee;Yongeun Kim;Kijong Cho
    • Korean Journal of Environmental Biology
    • /
    • v.42 no.2
    • /
    • pp.207-218
    • /
    • 2024
  • Food webs have received global attention as next-generation biomonitoring tools; however, it remains challenging because revealing trophic links between species is costly and laborious. Although a link-extrapolation method utilizing published trophic link data can address this difficulty, it has limitations when applied to construct food webs in domestic streams due to the lack of information on endemic species in global literature. Therefore, this study aimed to develop a link extrapolation-based food web model adapted to Korean stream ecosystems. We considered taxonomic similarity of predation and dominance of generalists in aquatic ecosystems, designing taxonomically higher-level matching methods: family matching for all fish (Family), endemic fish (Family-E), endemic fish playing the role of consumers (Family-EC), and resources (Family-ER). By adding the commonly used genus matching method (Genus) to these four matching methods, a total of five matching methods were used to construct 103 domestic food webs. Predictive power of both individual links and food web indices were evaluated by comparing constructed food webs with corresponding empirical food webs. Results showed that, in both evaluations, proposed methods tended to perform better than Genus in a data-poor environment. In particular, Family-E and Family-EC were the most effective matching methods. Our model addressed domestic data scarcity problems when using a link-extrapolation method. It offers opportunities to understand stream ecosystem food webs and may provide novel insights into biomonitoring.

Effects of Turbid Water on Fish Ecology in Streams and Dam Reservoirs

  • Seo, Jin-Won;Lee, Jong-Eun
    • Korean Journal of Ecology and Environment
    • /
    • v.41 no.4
    • /
    • pp.431-440
    • /
    • 2008
  • Turbid water or suspended sediment is associated with negative effects on aquatic organisms; fish, aquatic invertebrate, and periphyton. Effects of turbid water on fish differ depending on their developmental stage and a level of turbidity. Low turbid water may cause feeding and predation rates, reaction distance, and avoidance in fish, and it could make fish to die under high turbidity and long period. Therefore, it is very important to find out how turbid water or suspended sediment can affect fish in domestic watersheds. The objectives of this study were 1) to introduce international case studies and their standards to deal with suspended sediment, 2) to determine acute toxicity in 4 major freshwater fishes, and 3) to determine in relation to adverse effect of macroinvertebrates and fish. Impacts of turbid water on fish can be categorized into direct and indirect effects, and some factors such as duration and frequency of exposure, toxicity, temperature, life stage of fish, size of particle, time of occurrence, availability of and access to refugia, etc, play important role to decide magnitude of effect. A review of turbidity standard in USA, Canada, and Europe indicated that each standard varied with natural condition, and Alaska allowed liberal increase of turbidity over natural conditions in streams. Even though acute toxicity with four different species did not show any fatal effect, it should be considered to conduct a chronic test (long-term) for more detailed assessment. Compared to the control, dominance index of macroinvertebrates was greater in the turbid site, whereas biotic index, species diversity index, species richness index, and ecological score were smaller in the turbid site. According to histopathological analysis with gills of macroinvertebrate and fishes, morphological and physiological modification of gills due to suspended sediments can cause disturbance of respiration, excretion and secretion. In conclusion, in order to maintain good and healthy aquatic ecosystem, it is the best to minimize or prevent impact by occurrence of turbid water in stream and reservoir. We must make every effort to maintain and manage healthy aquatic ecosystem with additional investigation using various assessment tools and periodic biomonitoring of fish.

Chemical Analysis of Transplanted Aquatic Mosses and Aquatic Environment during a Fish Kill on the Chungnang River, Seoul, Korea

  • Lee, Joohyoung;Green, Perry-Johnson;Lee, Eun-Ju
    • Animal cells and systems
    • /
    • v.6 no.3
    • /
    • pp.215-219
    • /
    • 2002
  • In mid-April, 2000, hundreds of thousands of fish floated dead on the Chungnang River, one of the small branches of the Han River in Seoul. We examined the causes of the accident in detail, through analysis of monitorinq data from the Han River Monitoring Project, which employed the transplanted aquatic moss, Fontinalis antipyretica. This allowed investigation of another possible cause of the fish kill: release of trace metals into the river from industrial sources during the rainfall event. In addition, we aimed to verify the usefulness of aquatic mosses as bioindicators of the event. Water samples collected 48 h after the fish kill exhibited low pH and high Total-N and Total-p, indicating that acidic compounds rich in nitrogen and phosphorus might be a major contaminant. BOD and COD were also very high. On the whole, the conditions of the river water were degraded at that time. Distinct trends were not observed in the chlorophyll phaeophy-tinization quotient and photosynthesis rate of transplanted mosses. How-ever mosses sampled soon after the accident exhibited the lowest values for those variables (P < 0.01), suggesting that stress factors in the river were diluted out over time. Heavy metals with characteristics of industrial effluents (Cr, Pb, Zn, Fe, Cu, and Cd) increased (p < 0.01), indicating that they were unlikely to be major causes of the accident.

Neurobiochemical Analysis of Abnormal Fish Behavior Caused by Fluoranthene Toxicity (Fluoranthene 독성에 기인하는 비정상적 어류행동의 신경생화학적 분석)

  • 신성우;조현덕;전태수;김정상;이성규;고성철
    • Environmental Analysis Health and Toxicology
    • /
    • v.18 no.2
    • /
    • pp.155-163
    • /
    • 2003
  • Fluoranthene, a common polycyclicaromatic hydrocarbon (PAH), exhibits phototoxicity which may affect aquatic organisms. The eventual goal of this study is to develop a biomarker of Japanese medaka (Oryzias latipes) used in monitoring hazardous chemicals in the ecosystem. In this study we investigated neural toxicity of fluoranthene in Japanese medaka (Oryzias latipes) along with comparative analysis of corresponding behavioral response. The untreated individuals shooed normal behavioral characteristics (i. e., smooth and linear movements). The treated fish, however, showed stopping and abrupt change of orientation (100 ppb), and severely reduced locomotive activity and enhanced surfacing activity (1,000 ppb). Treatment of the medaka fish with fluoranthene caused a significant suppresson of acetycholine esterase (AChE) activities in the body portion but not in the head portion. When fish were exposed to 1,000 ppb of fluoranthene for 24 hr, the body AChE activities decreased from 126.${\pm}$31.89 (nmoles substrate hydrolyzed per min per mg protein) to 49.51${\pm}$11.99. Expressions of tyrosine hydroxylase (TH) protein in the different organs from both head and body portions were comparatively analyzed using an immunohistochemical technique. Five organs of the medaka fish showing a strong TH protein expression were the olfactory bulb, hypothalamus, optic lobe, pons and myelencephalon regions. This study provides molecular and neurobehavioral bases of a biomonitoring system for toxic chemicals using fish as a model organism.

Characterization and Expression of Chironomus riparius Alcohol Dehydrogenase Gene under Heavy Metal Stress (중금속 노출에 따른 리파리 깔다구에서의 ADH 유전자의 발현 및 특성)

  • Park, Ki-Yun;Kwak, Inn-Sil
    • Environmental Analysis Health and Toxicology
    • /
    • v.24 no.2
    • /
    • pp.107-117
    • /
    • 2009
  • Metal pollution of aquatic ecosystems is a problem of economic and health importance. Information regarding molecular responses to metal exposure is sorely needed in order to identify potential biomarkers. To determine the effects of heavy metals on chironomids, the full-length cDNA of alcohol dehydrogenase (ADH3) from Chironomus riparius was determined through molecular cloning and rapid amplification of cDNA ends (RACE). The expression of ADH3 was analyzed under various cadmium and copper concentrations. A comparative and phylogenetic study among different orders of insects and vertebrates was carried out through analysis of sequence databases. The complete cDNA sequence of the ADH3 gene was 1134 bp in length. The sequence of C. riparius ADH3 shows a low degree of amino acid identity (around 70%) with homologous sequences in other insects. After exposure of C. riparius to various concentrations of copper, ADH3 gene expression significantly decreased within 1 hour. The ADH3 gene expression was also suppressed in C. riparius after cadmium exposure for 24 hour. However, the effect of cadmium on ADH3 gene expression was transient in C. riparius. The results show that the suppression of ADH3 gene by copper exposure could be used as a possible biomarker in aquatic environmental monitoring and imply differential toxicity to copper and cadmium in C. riparius larvae.

Induction and Inhibition of CYP1A Gene Expression and Steroidogenesis in Olive Flounder Paralichthys olivaceus Exposed to Tributyltin and Benzo[a]pyrene

  • Jung Jee-Hyun;Yim Un-Hyuk;Jeon Joong-Kyun;Lee Ji-Seon;Kim Dae-Jung;Han Chang-Hee;Shim Won-Joon
    • Fisheries and Aquatic Sciences
    • /
    • v.9 no.2
    • /
    • pp.64-69
    • /
    • 2006
  • Cytochrome P450 (CYP1A) gene expression in the liver and sex steroid levels in plasma were investigated in olive flounder (Paralichthys olivaceus) exposed to tributyltin (TBT) and benzo[a]pyrene (BaP). We constructed a cDNA library and cloned a 230-base sequence encoding partial CYP1A DNA. The CYP1A gene expression level was estimated using northern blotting. Hepatic CYP1A mRNA levels in fish injected with BaP at 10 mg/kg body weight (b.w.) increased for 48 h after injection. However, fish injected with both BaP and TBT at 10 mg/kg b.w. showed no significant changes in CYP1A mRNA level after 48 h. Plasma concentrations of testosterone and $17{\beta}$-estradiol were not significantly different in males and females injected with BaP and TBT. We suggest that TBT-induced suppression of BaP bioactivity should be interpreted with caution in biomonitoring field studies.

Toxicity Response of Biosensor Using Sulfur-Oxidizing Bacteria to Various Nitrogenous Compounds (다양한 질소화합물에 대한 황산화미생물 바이오센서의 응답 특성)

  • Hwang, Ji-Hoon;Kang, Woo-Chang;Shin, Beom-Soo;Chae, Kyu-Jung;Oh, Sang-Eun
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.4
    • /
    • pp.314-320
    • /
    • 2014
  • BACKGROUND: Run off from agricultural sites contaminates water bodies with nitrogen which is toxic and causes eutrophication when excessively accumulated. Hence, the interest in monitoring nitrogen toxicity in aquatic environment has been continuously increasing. METHODS AND RESULTS: To detect a real time toxicity of various nitrogen compounds, we applied biomonitoring method (biosensor) based on sulfur-oxidizing bacteria (SOB). The toxicity biomonitoring test was conducted in semi-continuous mode in a reactor filled with sulfur particles (2~4 mm diameter) under aerobic condition. Relative toxicity was simply determined by measuring the change in electrical conductivity (EC). Various nitrogenous compounds at different concentrations were evaluated as a potential toxic substance. Nitrite was found to be very toxic to SOB with a 90% inhibition even when the concentration as low as 3 mg/L. However, nitrate and ammonia have any inhibitory effect on SOB's activity. CONCLUSION: The biosensor based on SOB responded sensitively to nitrite even at substantially low concentrations. Therefore, it can be used as a reliable biological alarm system for rapid detection of contaminants due to its simplicity and sensitive nature.

HSP70 and HSC70 gene Expression in Chironomus Tentans (Diptera, Chironomidae) larvae Exposed to Various Environmental Pollutants: Potential Biomarker for Environmental Monitoring

  • Lee Sun Mi;Choi Jin Hee
    • Environmental Mutagens and Carcinogens
    • /
    • v.25 no.1
    • /
    • pp.32-39
    • /
    • 2005
  • In order to identify potential biomarkers of environmental monitoring, we evaluated heat shock genes expressions as effects of various environmental pollutants (nonylphenol, bisphenol-A, 17a­ethynyl estradiol, bis(2-ethylhexyl)phthalate, endosulfan, paraquat dichloride, chloropyriphos, fenitrothion, cadmium chloride, lead nitrate, potassium dichromate, benzo[a]pyrene and carbon tetrachloride) on larvae of aquatic midge Chironomus tentans (Diptera, Chironomidae). Heat shock protein 70 gene expression increased in most of chemicals treated larvae compared to control. The response was rapid and sensitive to low chemical concentrations but not stressor specific. In conjunction with stressor specific biomarkers, heat shock protein 70 gene expression in Chironomus might be developed for assessing exposure to environmental stressors in the fresh water ecosystem. Considering the potential of Chironomus larvae as biomonitoring species, heat shock gene expression has a considerable potential as a sensitive biomarker for environmental monitoring in Chironomus.

  • PDF

The Influence of Sample Size on Environment Assessment Using Benthic Macroinvertebrates (저서성 대형무척추동물을 이용한 환경평가에서 표본크기가 미치는 영향)

  • Kim, Ah Reum;Oh, Min Woo;Kong, Dongsoo
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.6
    • /
    • pp.790-798
    • /
    • 2013
  • Benthic macroinvertebrates are widely used as biological indicators for assessing the integrity of aquatic ecosystem. However, sampling has usually been done with fixed sample size due to time consuming and costly process. This study was conducted to find out the influence of sample size on the biological indices (H' DI, R1, J, EPT, ESB and BMI) of benthic macroinvertebrates. The 15 replicate samples were quantitatively collected from each 3 different site of two mountain streams in May, 2011. With the replicate data, we combined the abundance of each species with all the possible combinations of the sample size. Along with the increase of sample size, the number of species increased continuously and did not converge. BMI showed little difference whereas other biological indices increased or decreased.