• 제목/요약/키워드: apriori algorithm

검색결과 108건 처리시간 0.023초

웹 로그 분석을 이용한 추천 에이전트의 개발 (Development of Recommendation Agents through Web Log Analysis)

  • 김성학;이창훈
    • 한국컴퓨터산업학회논문지
    • /
    • 제4권10호
    • /
    • pp.621-630
    • /
    • 2003
  • 웹 로그는 사용자가 웹 사이트의 데이터를 액세스할 때 웹 서버에 의해 기록되는 정보로써 최근 인터넷 이용의 급속한 증가로 인해 웹 로그의 활용가치가 더욱 중요하게 되었으며, 웹 로그의 분석 결과는 쇱 사용자들의 행위를 나타내는 패턴을 분석하거나 웹 사이트의 구조를 재배치 하는데 이용될 수 있다. 이를 실현하기 위한 많은 연구들은 주로 연관규칙과 순차패턴을 이용하고 있는데, 대다수는 Apriori 알고리즘을 기본으로 하고 있어서 대용량의 데이터베이스에 적용하기에는 컴퓨팅 시간적 측면에서 비효율적이다. 따라서 본 논문에서는 웹 환경에서 흥미있는 패턴을 탐사하는 새로운 알고리즘을 개발하여 보다 빠르게 패턴탐사를 수행하고, 많은 사용자들이 관심있게 순차적으로 접근하고 있는 정보를 시스템 관리자에게 제공할 수 있는 추천에이전트를 개발한다.

  • PDF

연관규칙을 이용한 문헌정보학 전문용어 클러스터링 기법에 관한 연구 (A Clustering Technique Using Association Rules for The Library and Information Science Terminology)

  • 승현우;박미영
    • 한국문헌정보학회지
    • /
    • 제37권2호
    • /
    • pp.89-105
    • /
    • 2003
  • 본 논문에서는 대량의 웹 문서로부터 연관된 지식정보를 검색하기 위한 전문 검색엔진을 개발하기 위하여 텍스트에서 추출된 전문 용어를 효율적으로 클러스터링하기 위한 방법을 제안하고자 한다. 즉, 일반적인 용어들간의 무의미한 연관 규칙이 양산되는 것을 방지하기 위하여 전문 용어로 구성된 지식베이스 테이블을 이용하여 의미 있는 용어들간의 연관 규칙을 생성한다. 연관 규칙은 하나의 논문에서 사용된 전문 용어들의 집합을 트랜잭션 단위로 구성하여 Apriori 알고리즘을 적용하여 생성된다. 하나의 용어로부터 생성된 연관 규칙 집합은 해당 전문 용어와 관련된 클러스터로 구성된다.

연역적 유전자 알고리즘을 이용한 연관 단어 지식베이스의 최적화 (Optimization of Associative Word Knowledge Base using Apriori-Genetic Algorithm)

  • 고수정;최준혁;이정현
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제28권8호
    • /
    • pp.560-569
    • /
    • 2001
  • 지식 기반 정보검색 시스템에서의 질의 확장은 단어간의 의미 관계를 고려한 지식베이스를 필요로 한다. 기존의 단순 마이닝 기법은 사용자의 선호도를 고려하지 않은 채 연관 단어를 추출하므로 재현율은 향상되나 정확도는 저하된다. 본 논문에서는 단어간의 의미 관게를 고려한 연관 단어 중에서 사용자가 선호하는 연관 단어만을 포함하는 정확도가 향상된 최적화된 연관 단어 지식베이스 구축을 위한 방법을 제안한다. 이를 위해 컴퓨터 분야의 웹문서를 8개의 클래스로 분류하고, 각 클래스별 웹문서에서 명사를 추출한다. 추출된 명사를 대상으로 Apriori 알고리즘을 이용하여 연관 단어를 추출하고, 유전자 알고리즘을 이용하여 사용자가 선호하지 않은 연관 단어를 지식베이스의 구축 대상에서 제외시킨다. 본 논문에서 제안된 Apriori 알고리즘과 유전자 알고리즘의 성능을 평가하기 위하여 Apriori 알고리즘은 상호 정보량과 Rocchio 알고리즘과 비교하며, 유전자 알고리즘은 TF.IDF를 이용한 단어 정제 방법과 비교한다.

  • PDF

단백질 부분 구조를 위한 효율적인 오류 허용 알고리즘 (An Efficient Fault Tolerant Apriori Algorithm for Local Protein Structures)

  • 김계형;김민호;허준호
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (A)
    • /
    • pp.869-871
    • /
    • 2003
  • 단백질 부분 구조는 일종의 단백질 패턴으로써 진화적인 성질을 띄고 있다. 본 논문에서는 단백질 간의 열 안정성과 이러한 단백질 부분 구조 간의 관련성에 대해서 알아보고자 한다. 또한 오류 허용 알고리즘 (FT-Apriori)의 성능을 향상시킬 수 있는 효과적인 기법을 제안한다. 이러한 기법을 단백질 부분 구조에 적용시킴으로써 실제 단백질 데이터에서 그 효용성을 일아본다.

  • PDF

점진적인 순차 패턴 갱신 알고리즘 (An Incremental Updating Algorithm of Sequential Patterns)

  • 김학자;황환규
    • 전자공학회논문지CI
    • /
    • 제43권5호
    • /
    • pp.17-28
    • /
    • 2006
  • 본 논문에서는 데이터베이스에 새로운 트랜잭션이 추가되었을 때 순차 패턴을 갱신하는 문제를 연구하였다. 트랜잭션이 순차적으로 증가되는 환경에서 기존에 발견된 빈발 시퀸스를 재사용하여 순차패턴을 갱신하는 효율적인 알고리즘을 제안한다. 본 논문에서 제안한 방법은 후보 집합의 개수를 효율적으로 줄임으로써 AprioriAll이나 PrefixSpan 알고리즘보다 좋은 성능을 보임을 실험으로 확인하였다.

퀀터티가 있는 순차 패턴을 찾는 깊이 우선 탐색 알고리즘 (An Efficient Depth First Algorithm for Mining Sequential Patterns with Quantities)

  • 김철연;심규석
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
    • /
    • pp.13-15
    • /
    • 2004
  • 순차 패턴을 찾는 것은 데이타 마이닝 응용분야에서 중요한 문제이다. 기존의 순차 패턴 마이닝 알고리즘들은 아이템으로만 이루어진 순차 패턴만을 취급하였으나 Apriori-QSP에서는 새롭게 퀀터티 정보에 대한 처리의 개념을 도입하였다. 전채 순차 패턴을 찾는 알고리즘들은 너비 우선 탐색과 깊이 우선 탐색 기법으로 분류할 수 있는데, 이러한 분류에서 Apriori-QSP알고리즘은 너비 우선 탐색 기법으로 분류할 수 있다. 본 논문에서는 퀀터티 정보를 처리하는 깊이 우선 탐색 기법을 제안하였다. Apriori-QSP에서 제안되었던 후보패턴 생성에 대한 필터링파 샘플링 기법을 깊이 우선 탐색의 탐색 기법으로 적용하였으며, 다양한 실험 결과들이 깊이 우선 탐색에서도 이러한 기법이 효율적임을 보여 주고 있다. 또한 길이가 긴 순차 패턴 마이닝의 경우 너비우선 탐색에 비해 향상된 성능을 보임을 확인하였다.

  • PDF

시공간 이동 시퀀스 패턴 마이닝 기법 (Spatial-Temporal Moving Sequence Pattern Mining)

  • 한선영;용환승
    • 응용통계연구
    • /
    • 제19권3호
    • /
    • pp.599-617
    • /
    • 2006
  • 최근 모바일 컴퓨팅 시스템에서 위치 기반 서비스(Location Based System: LBS)에 대한 연구가 활발히 진행되고 있다. 시공간 이동 시퀀스 마이닝은 이동 경로 데이터로부터 사용자 이동 패턴을 추출하는 새로운 마이닝 기법이다. 시공간 이동 시퀀스 패턴 마이닝은 기존의 빈발 패턴 마이닝 기법과 유사하나 몇 가지 차이점이 있다. 빈발 패턴 마이닝은 장바구니 분석에서와 같이 고객이 구입한 아이템과 관련된 것이나 시공간 이동 시퀀스 패턴 마이닝은 사용자 이동 시퀀스 경로를 대상으로 한다. 또한 사용자의 관심도를 반영하기 위해 해당 위치에서의 소요시간을 고려한다. 본 연구는 대표적인 빈발 패턴 마이닝 기법의 하나인 Apriori 알고리즘에 이동 시퀀스 데이터를 적용하여 Apriori_msp 알고리즘을 제안하였으며 성능 평가를 수행한 결과를 제시하였다.

빅데이터마이닝을 이용한 회계정보처리 모형 (Accounting Information Processing Model Using Big Data Mining)

  • 김경일
    • 융합정보논문지
    • /
    • 제10권7호
    • /
    • pp.14-19
    • /
    • 2020
  • 확장성 보고서 언어인 XML기술을 회계보고 영역에 응용한 인터넷 표준인 XBRL에 기초한 회계정보처리 모형을 제안하고자 한다. 기업마다 문서의 특성이 상이하기에 의사결정자에게 유용한 정보를 제공하여야 한다는 회계의 목적에 비추어 그 중요성이 크다. 본 연구는 X-Hive 데이터베이스 내에 XBRL로 저장된 XML 계층구조를 기반으로 하는 데이터 마이닝 모형을 제안하고자 한다. 데이터마이닝 분석은 연관규칙으로 실험되었고 XBRL을 기반으로 DC-Apriori 데이터마이닝 방법을 Apriori알고리즘과 X쿼리를 결합하여 제안한다. 마지막으로 제안 모형의 타당성과 유효성에 대해서는 실험을 통해 검증하였다.

생물학적 데이터 서열들에서 빈번한 최대길이 연속 서열 마이닝 (Mining Maximal Frequent Contiguous Sequences in Biological Data Sequences)

  • 강태호;유재수
    • 정보처리학회논문지D
    • /
    • 제15D권2호
    • /
    • pp.155-162
    • /
    • 2008
  • DNA 염기 서열이나 단백질 아미노산 서열과 같은 생물학적 서열 데이터들은 일반적으로 많은 수의 항목들을 가지고 있다. 생물학적 데이터 서열들에는 보통 빈번하게 발생하는 수 백개의 항목으로 이루어진 연속된 서열들이 존재한다. 이들 서열들에서 빈번하게 발생하는 연속 서열을 검색하는 것은 생물학적 서열 분석에서 중요한 부분을 차지하고 있다. 이전에는 순차 패턴을 효과적으로 발견하고자 하는 많은 연구들이 수행되었으며 대부분의 기존 순차패턴 마이닝 기법들은 Apriori 알고리즘을 기반으로 한다. PrefixSpan 알고리즘은 Apriori 기반의 가장 효율적인 순차패턴 마이닝 기법이다. 하지만 이 알고리즘은 길이-1인 빈발 패턴들로 부터 서열 패턴을 확장해나가는 방식이다. 따라서 길이가 긴 연속 서열을 포함하는 생물학적 데이터서열들에 대한 검색방법으로는 적합하지 않다. 최근에는 기존의 PrefixSpan방식을 이용하면서도 반복적인 처리과정을 줄인 MacosVSpan이 제안되었다. 하지만 이 알고리즘 또한 길이가 긴 생물학적 데이터 서열들로부터 빈번하게 발생하는 연속 서열들을 검색하기에는 효율적이지 않다. 본 논문에서는 많은 양의 생물학적 데이터 서열들로부터 빈번한 연속서열을 고정길이 확장 트리를 이용하여 효과적으로 찾아내는 방법을 제안한다. 그리고 다양한 환경에서 실험을 통해 제안하는 방식이 MacosVSpan알고리즘에 비해 검색성능이 보다 우수함을 보인다.

Mining Maximal Frequent Contiguous Sequences in Biological Data Sequences

  • Kang, Tae-Ho;Yoo, Jae-Soo;Kim, Hak-Yong;Lee, Byoung-Yup
    • International Journal of Contents
    • /
    • 제3권2호
    • /
    • pp.18-24
    • /
    • 2007
  • Biological sequences such as DNA and amino acid sequences typically contain a large number of items. They have contiguous sequences that ordinarily consist of more than hundreds of frequent items. In biological sequences analysis(BSA), a frequent contiguous sequence search is one of the most important operations. Many studies have been done for mining sequential patterns efficiently. Most of the existing methods for mining sequential patterns are based on the Apriori algorithm. In particular, the prefixSpan algorithm is one of the most efficient sequential pattern mining schemes based on the Apriori algorithm. However, since the algorithm expands the sequential patterns from frequent patterns with length-1, it is not suitable for biological datasets with long frequent contiguous sequences. In recent years, the MacosVSpan algorithm was proposed based on the idea of the prefixSpan algorithm to significantly reduce its recursive process. However, the algorithm is still inefficient for mining frequent contiguous sequences from long biological data sequences. In this paper, we propose an efficient method to mine maximal frequent contiguous sequences in large biological data sequences by constructing the spanning tree with a fixed length. To verify the superiority of the proposed method, we perform experiments in various environments. The experiments show that the proposed method is much more efficient than MacosVSpan in terms of retrieval performance.