• Title/Summary/Keyword: apriori algorithm

Search Result 108, Processing Time 0.025 seconds

XOnto-Apriori: An eXtended Ontology Reasoning-based Association Rule Mining Algorithm (XOnto-Apriori: 확장된 온톨로지 추론 기반의 연관 규칙 마이닝 알고리즘)

  • Lee, Chong-Hyeon;Kim, Jang-Won;Jeong, Dong-Won;Lee, Suk-Hoon;Baik, Doo-Kwon
    • The KIPS Transactions:PartD
    • /
    • v.18D no.6
    • /
    • pp.423-432
    • /
    • 2011
  • In this paper, we introduce XOnto-Apriori algorithm which is an extension of the Onto-Apriori algorithm. The extended algorithm is designed to improve the conventional algorithm's problem of comparing only identifiers of transaction items by reasoning transaction properties of the items which belong in the same category. We show how the mining algorithm works with a smartphone application recommender system based on our extended algorithm to clearly describe the procedures providing personalized recommendations. Further, our simulation results validate our analysis on the algorithm overhead, precision, and recall.

A Time-based Apriori Algorithm (아이템 사용시간을 고려한 Apriori알고리즘)

  • Kang, Hyung-Chang;Yang, Kun-Tak;Kim, Chul-Soo;Rhee, Yoon-Jung;Lee, Bong-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1327-1331
    • /
    • 2010
  • Association rules are very useful and interesting patterns for discovering preferences of each person in digital-content services. The Apriori algorithm is an influential algorithm for mining frequent itemsets for association rules. However, since this algorithm does not take into account reference times of each content as an important support factor, it cannot be used to extract associations among time-based data. This paper proposes an augmented Apriori algorithm discovers association rules using both frequencies and usage times of each item.

User Access Patterns Discovery based on Apriori Algorithm under Web Logs (웹 로그에서의 Apriori 알고리즘 기반 사용자 액세스 패턴 발견)

  • Ran, Cong-Lin;Joung, Suck-Tae
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.6
    • /
    • pp.681-689
    • /
    • 2019
  • Web usage pattern discovery is an advanced means by using web log data, and it's also a specific application of data mining technology in Web log data mining. In education Data Mining (DM) is the application of Data Mining techniques to educational data (such as Web logs of University, e-learning, adaptive hypermedia and intelligent tutoring systems, etc.), and so, its objective is to analyze these types of data in order to resolve educational research issues. In this paper, the Web log data of a university are used as the research object of data mining. With using the database OLAP technology the Web log data are preprocessed into the data format that can be used for data mining, and the processing results are stored into the MSSQL. At the same time the basic data statistics and analysis are completed based on the processed Web log records. In addition, we introduced the Apriori Algorithm of Web usage pattern mining and its implementation process, developed the Apriori Algorithm program in Python development environment, then gave the performance of the Apriori Algorithm and realized the mining of Web user access pattern. The results have important theoretical significance for the application of the patterns in the development of teaching systems. The next research is to explore the improvement of the Apriori Algorithm in the distributed computing environment.

Development of Network Event Audit Module Using Data Mining (데이터 마이닝을 통한 네트워크 이벤트 감사 모듈 개발)

  • Han, Seak-Jae;Soh, Woo-Young
    • Convergence Security Journal
    • /
    • v.5 no.2
    • /
    • pp.1-8
    • /
    • 2005
  • Network event analysis gives useful information on the network status that helps protect attacks. It involves finding sets of frequently used packet information such as IP addresses and requires real-time processing by its nature. Apriori algorithm used for data mining can be applied to find frequent item sets, but is not suitable for analyzing network events on real-time due to the high usage of CPU and memory and thus low processing speed. This paper develops a network event audit module by applying association rules to network events using a new algorithm instead of Apriori algorithm. Test results show that the application of the new algorithm gives drastically low usage of both CPU and memory for network event analysis compared with existing Apriori algorithm.

  • PDF

An Efficient Tree Structure Method for Mining Association Rules (트리 구조를 이용한 연관규칙의 효율적 탐색)

  • Kim, Chang-Oh;Ahn, Kwang-Il;Kim, Seong-Jip;Kim, Jae-Yearn
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.27 no.1
    • /
    • pp.30-36
    • /
    • 2001
  • We present a new algorithm for mining association rules in the large database. Association rules are the relationships of items in the same transaction. These rules provide useful information for marketing. Since Apriori algorithm was introduced in 1994, many researchers have worked to improve Apriori algorithm. However, the drawback of Apriori-based algorithm is that it scans the transaction database repeatedly. The algorithm which we propose scans the database twice. The first scanning of the database collects frequent length l-itemsets. And then, the algorithm scans the database one more time to construct the data structure Common-Item Tree which stores the information about frequent itemsets. To find all frequent itemsets, the algorithm scans Common-Item Tree instead of the database. As scanning Common-Item Tree takes less time than scanning the database, the algorithm proposed is more efficient than Apriori-based algorithm.

  • PDF

An Algorithm for reducing the search time of Frequent Items (빈발 항목의 탐색 시간을 단축하기 위한 알고리즘)

  • Yun, So-Young;Youn, Sung-Dae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.1
    • /
    • pp.147-156
    • /
    • 2011
  • With the increasing utility of the recent information system, the methods to pick up necessary products rapidly by using a lot of data has been studied. Association rule search methods to find hidden patterns has been drawing much attention, and the Apriori algorithm is a major method. However, the Apriori algorithm increases search time due to its repeated scans. This paper proposes an algorithm to reduce searching time of frequent items. The proposed algorithm creates matrix using transaction database and search for frequent items using the mean number of items of transactions at matrix and a defined minimum support. The mean number of items of transactions is used to reduce the number of transactions, and the minimum support to cut down on items. The performance of the proposed algorithm is assessed by the comparison of search time and precision with existing algorithms. The findings from this study indicated that the proposed algorithm has been searched more quickly and efficiently when extracting final frequent items, compared to existing Apriori and Matrix algorithm.

An Experimental Study on Selecting Association Terms Using Text Mining Techniques (텍스트 마이닝 기법을 이용한 연관용어 선정에 관한 실험적 연구)

  • Kim, Su-Yeon;Chung, Young-Mee
    • Journal of the Korean Society for information Management
    • /
    • v.23 no.3 s.61
    • /
    • pp.147-165
    • /
    • 2006
  • In this study, experiments for selection of association terms were conducted in order to discover the optimum method in selecting additional terms that are related to an initial query term. Association term sets were generated by using support, confidence, and lift measures of the Apriori algorithm, and also by using the similarity measures such as GSS, Jaccard coefficient, cosine coefficient, and Sokal & Sneath 5, and mutual information. In performance evaluation of term selection methods, precision of association terms as well as the overlap ratio of association terms and relevant documents' indexing terms were used. It was found that Apriori algorithm and GSS achieved the highest level of performances.

Effective User Clustering Algorithm for Collaborative Filtering System (협력적 여과 시스템을 위한 효과적인 사용자 군집 알고리즘)

  • Go, Su-Jeong;Im, Gi-Uk;Lee, Jeong-Hyeon
    • The KIPS Transactions:PartB
    • /
    • v.8B no.2
    • /
    • pp.144-154
    • /
    • 2001
  • 협력적 여과 시스템은 사용자가 검색하고 읽었던 웹문서를 기반으로 사용자 군집을 생성하여 웹문서의 정확한 추천을 가능하게 한다. 이러한 목적으로 설계된 다양한 알고리즘이 있으나 속도가 느리거나 정확도가 낮다는 등의 단점이 있다. 본 논문에서는 이러한 단점을 보완하기 위하여 협력적 여과 시스템을 위한 효과적인 사용자 군집 알고리즘인 CUG알고리즘은 사용자 군집을 생성하기 위해 Apriori 알고리즘, Native Bayes 알고리즘을 이용한다. Apriori 알고리즘은 연관 단어 지식 베이스를 구축하고, Native Bayes 알고리즘은 구축된 연관 단어 지식 베이스에 가중치를 추가하며, 사용자가 검색하여 읽은 웹문서를 클래스별로 분류한다. CUG 알고리즘은 분류된 웹문서를 기반으로 하여 사용자 군집을 만든다. 이러한 방법으로 설계된 CUG 알고리즘은 사용자들이 사용할 문서를 미리 검색하여 저장함에 의해 정보검색의 효율성을 향상시키는데 사용될 수 있다. 본 논문에서 설계한 CUG 알고리즘의 선능을 평가하기 위하여 기존의 K-means 방법과 Gibbs샘플링 방법에 의한 군집과 비교한다.

  • PDF

Bayesian Automatic Document Categorization Using Apriori-Genetic Algorithm (Apriori-Genetic 알고리즘을 이용한 베이지안 자동 문서 분류)

  • Go, Su-Jeong;Lee, Jeong-Hyeon
    • The KIPS Transactions:PartB
    • /
    • v.8B no.3
    • /
    • pp.251-260
    • /
    • 2001
  • 기존의 베이지안 문서 분류는 문서의 특징 표현에 있어서 단어간의 의미를 정확하게 반영하지 못하는 문제점이 있다. 이러한 문제점을 해결하기 위해, 본 논문에서는 Apriori-Genetic 알고리즘을 이용한 베이지안 문서 분류 방법을 제안한다. Apriori 알고리즘은 단어간의 의미를 반영한 연관 단어의 형태로 문서의 특징을 추출하며 추출된 연관 단어로 연관 단어 지식베이스를 구축한다. Aprrori 알고리즘만으로 연관 단어 지식베이스를 구축할 경우, 지식베이스 안에 부적당한 연관 단어가 포함된다. 따라서 문서 분류의 정확도가 낮아지는 단점이 있다. 이러한 단점을 보완하기 위해, Genetic 알고리즘을 이용하여 연관 단어 지식베이스를 최적화하는 방법을 사용한다. 베이지안 확률을 이용하는 분류자는 최적화된 연관 단어 지식베이스를 기반으로 문서를 클래스별로 분류한다. Apriori-Genetic 알고리즘을 이용한 베이지안 문서 분류의 성능을 평가하기 위해, Apriori 알고리즘을 이용한 베이지안 문서 분류 방법, 역문헌빈도를 사용한 베이지안 문서 분류 방법, 기존의 단순 베이지안 분류 방법과 비교하였다.

  • PDF

Feature Extraction of Web Document using Association Word Mining (연관 단어 마이닝을 사용한 웹문서의 특징 추출)

  • 고수정;최준혁;이정현
    • Journal of KIISE:Databases
    • /
    • v.30 no.4
    • /
    • pp.351-361
    • /
    • 2003
  • The previous studies to extract features for document through word association have the problems of updating profiles periodically, dealing with noun phrases, and calculating the probability for indices. We propose more effective feature extraction method which is using association word mining. The association word mining method, by using Apriori algorithm, represents a feature for document as not single words but association-word-vectors. Association words extracted from document by Apriori algorithm depend on confidence, support, and the number of composed words. This paper proposes an effective method to determine confidence, support, and the number of words composing association words. Since the feature extraction method using association word mining does not use the profile, it need not update the profile, and automatically generates noun phrase by using confidence and support at Apriori algorithm without calculating the probability for index. We apply the proposed method to document classification using Naive Bayes classifier, and compare it with methods of information gain and TFㆍIDF. Besides, we compare the method proposed in this paper with document classification methods using index association and word association based on the model of probability, respectively.