• Title/Summary/Keyword: approximation by Maclaurin series

Search Result 3, Processing Time 0.019 seconds

PID controller tuning for processes with time delay

  • Lee, Yongho;Lee, Moonyong;Park, Sunwon;Brosilow, Coleman
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.291-294
    • /
    • 1996
  • By far the PID controller is most widely sed in the process industries. However, current tuning methods yield PID parameters only for a restricted class of process models. There is no general methodology of PID controller tuning for arbitrary process models. In this paper, we generalize the IMC-PID approach and obtain the PID parameters for general models by approximating the ideal controller with a Maclaurin series. Further, the PID controller tuned by the proposed PID tuning method gave more closer closed-loop response to the desired response than those tuned by other tuning methods.

  • PDF

Analytical approximate solutions for large post-buckling response of a hygrothermal beam

  • Yu, Yongping;Sun, Youhong
    • Structural Engineering and Mechanics
    • /
    • v.43 no.2
    • /
    • pp.211-223
    • /
    • 2012
  • This paper deals with large deformation post-buckling of a linear-elastic and hygrothermal beam with axially nonmovable pinned-pinned ends and subjected to a significant increase in swelling by an alternative method. Analytical approximate solutions for the geometrically nonlinear problem are presented. The solution for the limiting case of a string is also obtained. By coupling of the well-known Maclaurin series expansion and orthogonal Chebyshev polynomials, the governing differential equation with sinusoidal nonlinearity can be reduced to form a cubic-nonlinear equation, and supplementary condition with cosinoidal nonlinearity can also be simplified to be a polynomial integral equation. Analytical approximations to the resulting boundary condition problem are established by combining the Newton's method with the method of harmonic balance. Two approximate formulae for load along axis, potential strain for free hygrothermal expansion and periodic solution are established for small as well as large angle of rotation at the end of the beam. Illustrative examples are selected and compared to "reference" solution obtained by the shooting method to substantiate the accuracy and correctness of the approximate analytical approach.

Analytical approximate solution for Initial post-buckling behavior of pipes in oil and gas wells

  • Yu, Yongping;Sun, Youhong;Han, Yucen
    • Coupled systems mechanics
    • /
    • v.1 no.2
    • /
    • pp.155-163
    • /
    • 2012
  • This paper presents analytical approximate solutions for the initial post-buckling deformation of the pipes in oil and gas wells. The governing differential equation with sinusoidal nonlinearity can be reduced to form a third-order-polynomial nonlinear equation, by coupling of the well-known Maclaurin series expansion and orthogonal Chebyshev polynomials. Analytical approximations to the resulting boundary condition problem are established by combining the Newton's method with the method of harmonic balance. The linearization is performed prior to proceeding with harmonic balancing thus resulting in a set of linear algebraic equations instead of one of non-linear algebraic equations, unlike the classical method of harmonic balance. We are hence able to establish analytical approximate solutions. The approximate formulae for load along axis, and periodic solution are established for derivative of the helix angle at the end of the pipe. Illustrative examples are selected and compared to "reference" solution obtained by the shooting method to substantiate the accuracy and correctness of the approximate analytical approach.