• Title/Summary/Keyword: approximately continuous

Search Result 351, Processing Time 0.022 seconds

On-line Prediction Model of Oil Content in Oil Discharge Monitoring Equipment Using Parallel TSK Fuzzy Modeling (병렬구조 TSK 퍼지 모델을 이용한 선박용 기름배출 감시장치의 실시간 기름농도 예측모델)

  • Baek, Gyeong-Dong;Cho, Jae-Woo;Choi, Moon-Ho;Kim, Sung-Shin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.1
    • /
    • pp.12-17
    • /
    • 2010
  • The oil tanker ship over 150GRT must equip oil content meter which satisfy requirements of revised MARPOL 73/78. Online measurement of oil content in complex samples is required to have fast response, continuous measurement, and satisfaction of ${\pm}10ppm$ or ${\pm}10%$ error in this field. The research of this paper is to develop oil content measurement system using analysis of light transmission and scattering among turbidity measurement methods. Light transmission and scattering are analytical methods commonly used in instrumentation for online turbidity measurement of oil in water. Gasoline is experimented as a sample and the oil content approximately ranged from 14ppm to 600ppm. TSK Fuzzy Model may be suitable to associate variously derived spectral signals with specific content of oil having various interfering factors. Proposed Parallel TSK Fuzzy Model is reasonably used to classify oil content in comparison with other models. Those measurement methods would be effectively applied and commercialized to oil content meter that is key components of oil discharge monitoring control equipment.

Hydrogen Fermentation of the Galactose-Glucose Mixture (갈락토스-글루코스 혼합당 수소 발효)

  • Cheon, Hyo-Chang;Kim, Sang-Youn
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.4
    • /
    • pp.397-403
    • /
    • 2012
  • Galactose, an isomer of glucose with an opposite hydroxyl group at the 4-carbon, is a major fermentable sugar in various promising feedstock for hydrogen production including red algal biomass. In this study, hydrogen production characteristics of galactose-glucose mixture were investigated using batch fermentation experiments with heat-treated digester sludge as inoclua. Galactose showed a hydogen yield compatible with glucose. However, more complicated metabolic steps for galactose utilization caused a slower hydrogen production rate. The existence of glucose aggravated the hydrogen production rate, which would result from the regulation of galactose-utilizing enzymes by glucose. Hydrogen produciton rate at galactose to glucose ratio of 8:2 or 6:4 was 67% of the production rate for galactose and 33% for glucose, which could need approximately 1.5 and 3 times longer hydraulic retention time than galacgtose only condition and glucose only condition, respectively, in continuous fermentation. Hydrogen production rate, Hydrogen yield, and organic acid production at galactose to glucose ratio of 8:2 or 6:4 were 0.14 mL H2/mL/hr, 0.78 mol $H_2$/mol sugar, and 11.89 g COD/L, respectively. Galactose-rich biomass could be usable for hydogen fermenation, however, the fermentation time should be allowed enough.

Production of Palatinose by Immobilized Cells of Erwinia rhapontici (Erwinia rhapontici 고정화에 의한 Palatinose의 생산)

  • 윤종원;오광근
    • KSBB Journal
    • /
    • v.7 no.1
    • /
    • pp.79-83
    • /
    • 1992
  • The characteristics of Erwinia rhapontici cells with $\alpha$-glucosyltransferase activity immobilized in Ca-alginate beads and the performance of two different types of reactor-stirred tank reactor(STR) and packed bed reactor(PBR)-charged with these immobilized cells to produce palatinose from sucrose were investigated. The optimal pH(5.5-6.0) and temperature($30-35^{\circ}C$) showed no appreciable difference between free and immobilized cells. The apparent Km value of the immobilized cells(0.28M) was approximately two times higher than that of free cells(0.13M) at $30^{\circ}C$. The half life of the immobilized cells was found to be 380 h with STR while much greater operational stability was achieved with PBR. Continuous operation of PBR at a space velocity of $0.2h^{-1}$ for 30 days showed only 5% loss of initial activity.

  • PDF

Corrosion Behavior of a High-Manganese Austenitic Alloy in Pure Zinc Bath

  • Yi, Zhang;Liu, Junyou;Wu, Chunjing
    • Corrosion Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.98-103
    • /
    • 2010
  • In order to further reduce the cost without reducing the corrosion resistance, a high-manganese austenitic alloy for sink roll or stabilizer roll in continuous hot-dip coating lines was developed. A systematic study of corrosion behavior of the high-manganese austenitic alloy in pure zinc bath at $490^{\circ}C$ was carried out. The results shows that, the high-manganese austenitic alloy shows better corrosion resistance than 316L steel. The corrosion rate of the high-manganese austenitic alloy in pure zinc bath is calculated to be approximately $6.42{\times}10^{-4}g{\cdot}cm^{-2}{\cdot}h^{-1}$, while the 316L is $1.54{\times}10^{-3}g{\cdot}cm^{-2}{\cdot}h^{-1}$. The high-manganese austenitic alloy forms a three-phase intermetallic compound layer morphology containing ${\Gamma$}, ${\delta}$ and ${\zeta}$ phases, while the 316L is almost ${\zeta}$ phase. The ${\Gamma}$ and ${\delta}$ phases of the high-manganese austenitic alloy contain about 8.5 wt% Cr, the existence of Cr improve the stabilization of phases, which slow down the reaction of Fe and Zn, improve the corrosion resistance of the high-manganese austenitic alloy. So substitute the nickel with the manganese to manufacture the high-manganese austenitic alloy of low cost is feasible.

Column-loss response of RC beam-column sub-assemblages with different bar-cutoff patterns

  • Tsai, Meng-Hao;Lua, Jun-Kai;Huang, Bo-Hong
    • Structural Engineering and Mechanics
    • /
    • v.49 no.6
    • /
    • pp.775-792
    • /
    • 2014
  • Static loading tests were carried out in this study to investigate the effect of bar cutoff on the resistance of RC beam-column sub-assemblages under column loss. Two specimens were designed with continuous main reinforcement. Four others were designed with different types of bar cutoff in the mid-span and/or the beam-end regions. Compressive arch and tensile catenary responses of the specimens under gravitational loading were compared. Test results indicated that those specimens with approximately equal moment strength at the beam ends had similar peak loading resistance in the compressive arch phase but varied resistance degradation in the transition phase because of bar cutoff. The compressive bars terminated at one-third span could help to mitigate the degradation although they had minor contribution to the catenary action. Among those cutoff patterns, the K-type cutoff presented the best strength enhancement. It revealed that it is better to extend the steel bars beyond the mid-span before cutoff for the two-span beams bridging over a column vulnerable to sudden failure. For general cutoff patterns dominated by gravitational and seismic designs, they may be appropriately modified to minimize the influence of bar cutoff on the progressive collapse resistance.

A Preliminary Implementation Study of TDMA-based Positioning System Utilizing USRP and GNU Radio

  • Yoo, Won Jae;Choi, Kwang Ho;Lim, JoonHoo;Kim, La Woo;So, Hyoungmin;Lee, Hyung Keun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.3
    • /
    • pp.95-104
    • /
    • 2017
  • Positioning signals transmitted by Global Positioning System (GPS) satellites located at approximately 20,000 km height is very weak. For the reason, GPS signals are vulnerable to intentional jamming and unintentional disturbance. Recently, the number of jamming has been increased significantly all over the world. For the applications where continuous and reliable positioning is required when GPS jammers are activated, other positioning systems are strongly required. In this work, a set of Time Division Multiple Access (TDMA)-based transmitters and receivers utilizing Universal Software Radio Peripheral (USRP) and GNU Radio are designed and implemented. To eliminate the undesirable effects of GPS jamming, a frequency band which does not overlap L band is utilized. To demonstrate the accuracy of the proposed method, an experiment was performed.

Chitosan Nanoparticles as a New Delivery System for the Anti-HIV Drug Zidovudine

  • Dahmane, El Montassir;Rhazi, Mohammed;Taourirte, Moha
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.1333-1338
    • /
    • 2013
  • Chitosan-based nanoparticles (CSNP) were prepared through ionic cross-linking and gelation of chitosan (CS) by tripolyphosphate (TPP). CS properties such as molecular weight, and preparation conditions were screened and the resulting nanoparticles were examined by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The obtained particles were consistently spherical with an overall diameter of approximately $107{\pm}20$ nm. They were successfully used as a carrier for Zidovudine, an anti-human immunodeficiency virus (HIV) which, to our knowledge, is novel. The encapsulation ability, loading capacity, and controlled release behavior for these CSNP was evaluated. Results indicated that their intrinsic properties were strongly affected by properties inherent to CS such as molecular weight, and by the preparation condition, such as cross-linking density, which depends on the concentration of the cross-linker. In vitro release tests for the entrapped zidovudine showed that the CNNP provided a continuous release that can last upwards 20 h.

Effects of Different Coal Type on Gasification Characteristics (Pilot 규모 석탄 가스화기에서의 탄종별 가스화성능 특성)

  • Park, Se-Ik;Lee, Joon-Won;Seo, Hea-Kyung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.5
    • /
    • pp.470-477
    • /
    • 2010
  • The IGCC (Integrated gasification combined cycle) is known for one of the highest efficiency and the lowest emitting coal fueled power generating technologies. As the core technology of this system is the gasifier to make the efficiency and the continuous operation time increase, the research about different coal's gasification has been conducted. Our research group had set-up the coal gasifier for the pilot test to study the effect of different coals-Shenhua and Adaro coal- on gasification characteristics. Gasification conditions like temperature and pressure were controlled at a fixed condition and coal feed rate was also controlled 30 kg/h to retain the constant experimental condition. Through this study we found effects of coal composition and $O_2$/coal ratio on the cold gas efficiency, carbon conversion rate. The compounds of coal like carbon and ash make the performance of gasifier change. And carbon conversion rate was decreased with reduced $O_2$/coal ratio. The optical $O_2$/coal ratio is 0.8 for the highest cold gas efficiency approximately. At those operating conditions, the higher coal has the C/H ratio, the lower syn-gas has the $H_2$/CO ratio.

Accuracy and Error Characteristics of SMOS Sea Surface Salinity in the Seas around Korea

  • Park, Kyung-Ae;Park, Jae-Jin
    • Journal of the Korean earth science society
    • /
    • v.41 no.4
    • /
    • pp.356-366
    • /
    • 2020
  • The accuracy of satellite-observed sea surface salinity (SSS) was evaluated in comparison with in-situ salinity measurements from ARGO floats and buoys in the seas around the Korean Peninsula, the northwest Pacific, and the global ocean. Differences in satellite SSS and in-situ measurements (SSS errors) indicated characteristic dependences on geolocation, sea surface temperature (SST), and other oceanic and atmospheric conditions. Overall, the root-mean-square (rms) errors of non-averaged SMOS SSSs ranged from approximately 0.8-1.08 psu for each in-situ salinity dataset consisting of ARGO measurements and non-ARGO data from CTD and buoy measurements in both local seas and the ocean. All SMOS SSSs exhibited characteristic negative bias errors at a range of -0.50- -0.10 psu in the global ocean and the northwest Pacific, respectively. Both rms and bias errors increased to 1.07 psu and -0.17 psu, respectively, in the East Sea. An analysis of the SSS errors indicated dependence on the latitude, SST, and wind speed. The differences of SMOS-derived SSSs from in-situ salinity data tended to be amplified at high latitudes (40-60°N) and high sea water salinity. Wind speeds contributed to the underestimation of SMOS salinity with negative bias compared with in-situ salinity measurements. Continuous and extensive validation of satellite-observed salinity in the local seas around Korea should be further investigated for proper use.

Reactive Extrusion of Starch-g-Polyacrylonitrile in the Preparation of Absorbent Materials

  • Yoon, Kee-Jong;Carr, M.E.;Bagley, E.B.
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1990.06b
    • /
    • pp.8-8
    • /
    • 1990
  • A new method for the graft polymerization of acrylonitrile onto starch is presented. Graft polymerization of acrylonitrile onto starch and the subsequent hydrolysis in sodium hydroxide solution to prepare absorbents is well known. This process has been utilized to produce the commercial product, Super Slurper. In a typical batch process, ~5% starch in water mixture is gelatinized at $95^{\circ}C$ under stirring for 1 hour then cooled to room temperature. The graft polymerization itself is carried out for approximately 2 hours at $25~30^{\circ}C$ on the gelatinized starch by eerie ion initiation. In this study, graft polymerization of acrylonitrile onto starch via a reactive extrusion process which is a continuous, efficient process is described. Initial concentration of starch in water is 35% and the reaction temperatures are between $50~80^{\circ}C$. However, the most significant difference in the reactive extrusion process is the short time in which the graft polymerization takes place. Preliminary results on the properties of graft polymerization products obtained from the reactive extrusion process are compared to those obtained from the batch process as well as the absorbency of the hydrolyzed samples. Absorbent material has also been prepared by sequential grafting and saponification in the extruder followed by a 2 hour heat treatment of the extrudate in an air circulated oven at $100^{\circ}C$.

  • PDF