DOI QR코드

DOI QR Code

Chitosan Nanoparticles as a New Delivery System for the Anti-HIV Drug Zidovudine

  • Dahmane, El Montassir (Laboratoire de chimie Bio organique et Macromoleculaire (LCBM), Departement des Sciences Chimiques, Faculte des Sciences et Techniques Gueliz (FSTG)) ;
  • Rhazi, Mohammed (Departement des Sciences Chimiques, Faculte des Sciences et Techniques Gueliz (FSTG)) ;
  • Taourirte, Moha (Laboratoire de chimie Bio organique et Macromoleculaire (LCBM), Departement des Sciences Chimiques, Faculte des Sciences et Techniques Gueliz (FSTG))
  • Received : 2012.12.03
  • Accepted : 2013.02.01
  • Published : 2013.05.20

Abstract

Chitosan-based nanoparticles (CSNP) were prepared through ionic cross-linking and gelation of chitosan (CS) by tripolyphosphate (TPP). CS properties such as molecular weight, and preparation conditions were screened and the resulting nanoparticles were examined by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The obtained particles were consistently spherical with an overall diameter of approximately $107{\pm}20$ nm. They were successfully used as a carrier for Zidovudine, an anti-human immunodeficiency virus (HIV) which, to our knowledge, is novel. The encapsulation ability, loading capacity, and controlled release behavior for these CSNP was evaluated. Results indicated that their intrinsic properties were strongly affected by properties inherent to CS such as molecular weight, and by the preparation condition, such as cross-linking density, which depends on the concentration of the cross-linker. In vitro release tests for the entrapped zidovudine showed that the CNNP provided a continuous release that can last upwards 20 h.

Keywords

References

  1. Broder, S.; Mitsuya, H.; Yarchoan, R.; Pavlakis, G. N. Ann. Intern. Med. 1990, 113, 604. https://doi.org/10.7326/0003-4819-113-8-604
  2. Klecker, R. W., Jr.; Collins, J. M.; Yarchoan, R.; Thomas, R.; Jenkins, J. F.; Broder, S.; Myers, C. E. Clin. Pharmacol. Ther. 1987, 41, 407. https://doi.org/10.1038/clpt.1987.49
  3. Mitsuya, H.; Yarchoan, R.; Broder, S. Science 1990, 1533.
  4. Yarchoan, R.; Weinhold, K.; Lyerly, H. K.; Gelmann, E.; Blum, R.; Shearer, G.; Mitsuya, H.; Collins, J.; Myers, C.; Klecker, R.; Markham, P.; Durack Lehrman, S. N.; Barry, D.; Fischl, M.; Gallo, R.; Bolognesi, D.; Broder, S. The Lancet. 1986, 327, 575. https://doi.org/10.1016/S0140-6736(86)92808-4
  5. Palombo, M. S.; Singh, Y.; Sinko, P. J. J. Drug. Deliv. Sci. Technol. 2009, 19, 3. https://doi.org/10.1016/S1773-2247(09)50001-9
  6. Shahiwala, A.; Amiji, M. M. J. HIV Ther. 2007, 1, 49. https://doi.org/10.2217/17469600.1.1.49
  7. Vyas, T. K.; Shah, L.; Amiji, M. M. Expert. Opin. Drug. Deliv. 2006, 3, 613. https://doi.org/10.1517/17425247.3.5.613
  8. Bajaj, A.; Desai, M. Pharma. Times 2006, 38, 12.
  9. Hans, M. L.; Lowman, A. M. Curr. Opin. Solid State Mater Sci. 2002, 6, 319. https://doi.org/10.1016/S1359-0286(02)00117-1
  10. Soppimath, K. S.; Aminabhavi, T. M.; Kulkarni, A. R.; Rudzinski, W. E. J. Control. Release 2001, 70, 1. https://doi.org/10.1016/S0168-3659(00)00339-4
  11. Kumar, M. N. V. R.; Muzzarelli, R. A. A.; Muzzarelli, C.; Sashiwa, H.; Domb, A. J. Chem. Rev. 2004, 104, 6017. https://doi.org/10.1021/cr030441b
  12. Felt, O.; Buri, P.; Gurny, R. Drug. Dev. Ind. Pharm. 1998, 24, 979. https://doi.org/10.3109/03639049809089942
  13. Paul, W.; Sharma, C. P. STP Pharma. Sciences 2000, 10, 5.
  14. Rinaudo, M. Prog. Polym. Sci. 2006, 31, 603. https://doi.org/10.1016/j.progpolymsci.2006.06.001
  15. Kean, T.; Thanou, M. Adv. Drug. Deliver Rev. 2010, 62, 3. https://doi.org/10.1016/j.addr.2009.09.004
  16. He, P.; Davis, S. S.; Illum, L. Int. Journal Phar. 1998, 166, 75. https://doi.org/10.1016/S0378-5173(98)00027-1
  17. Lehr, C. M.; Bouwstra, J. A.; Schacht, E. H.; Junginger, H. E. Int. J. Pharm. 1992, 78, 43. https://doi.org/10.1016/0378-5173(92)90353-4
  18. Porporatto, C.; Bianco, I. D.; Correa, S. G. J. Leukoc. Biol. 2005, 78, 62. https://doi.org/10.1189/jlb.0904541
  19. Van der Lubben, I. M.; Verhoef, J. C.; van Aelst, A. C.; Borchard, G.; Junginger, H. E. Biomaterials 2001, 22, 687. https://doi.org/10.1016/S0142-9612(00)00231-3
  20. Yamamoto, H.; Kuno, Y.; Sugimoto, S.; Takeuchi, H.; Kawashima, Y. J. Control. Release 2005, 102, 373. https://doi.org/10.1016/j.jconrel.2004.10.010
  21. Agnihotri, S. A.; Mallikarjuna, N. N.; Aminabhavi, T. M. J. Control. Release 2004, 100, 5. https://doi.org/10.1016/j.jconrel.2004.08.010
  22. Prabaharan, M.; Mano, J. F. Drug. Deliv. 2004, 12, 41. https://doi.org/10.1080/10717540590889781
  23. Ciofani, G.; Raffa, V.; Menciassi, A.; Dario, P. Biomed. Microdevices 2008, 10, 131. https://doi.org/10.1007/s10544-007-9118-7
  24. De Campos, A. M.; Sánchez, A.; Alonso, M. J. Int. J. Pharm. 2001, 224, 159. https://doi.org/10.1016/S0378-5173(01)00760-8
  25. Dube, A.; Nicolazzo, J. A.; Larson, I. Eur. J. Pharm. Sci. 2010, 41, 219. https://doi.org/10.1016/j.ejps.2010.06.010
  26. Huang, X.; Du, Y. Z.; Yuan, H.; Hu, F. Q. Carbohydr. Polym. 2009, 76, 368. https://doi.org/10.1016/j.carbpol.2008.10.025
  27. Janes, K. A.; Fresneau, M. P.; Marazuela, A.; Fabra, A.; Alonso, M. J. J. Control. Release 2001, 73, 255. https://doi.org/10.1016/S0168-3659(01)00294-2
  28. Katas, H.; Alpar, H. O. J. Control. Release 2006, 115, 216. https://doi.org/10.1016/j.jconrel.2006.07.021
  29. Mitra, S.; Gaur, U.; Ghosh, P. C.; Maitra, A. N. J. Control. Release 2001, 74, 317. https://doi.org/10.1016/S0168-3659(01)00342-X
  30. Wilson, B.; Samanta, M. K.; Santhi, K.; Kumar, K. P. S.; Ramasamy, M.; Suresh, B. Nanomedicine 2010, 6, 144. https://doi.org/10.1016/j.nano.2009.04.001
  31. Rhazi, M.; Desbrières, J.; Tolaimate, A.; Alagui, A.; Vottero, P. Polym. Int. 2000, 49, 337. https://doi.org/10.1002/(SICI)1097-0126(200004)49:4<337::AID-PI375>3.0.CO;2-B
  32. Tolaimate, A.; Desbrières, J.; Rhazi, M.; Alagui, A.; Vincendon, M.; Vottero, P. Polymer. 2000, 41, 2463. https://doi.org/10.1016/S0032-3861(99)00400-0
  33. Broussignac, P. Chimie Industrielle et Genie Chimique. 1968, 99, 1241.
  34. Lavertu, M.; Xia, Z.; Serreqi, A. N.; Berrada, M.; Rodrigues A.; Wang, D.; Buschmann, M. D.; Gupta, A. Journal of Pharmaceutical and Biomedical Analysis 2003, 32, 1149. https://doi.org/10.1016/S0731-7085(03)00155-9
  35. Rinaudo, M.; Milas, M.; Dung, P. L. Int. J. Biol. Macromol. 1993, 15, 281. https://doi.org/10.1016/0141-8130(93)90027-J
  36. Banerjee, T.; Mitra, S.; Kumar, Singh, A.; Kumar Sharma, R.; Maitra, A. Int. J. Pharm. 2002, 243, 93. https://doi.org/10.1016/S0378-5173(02)00267-3
  37. Dudhani, A. R.; Kosaraju, S. L. Carbohydr. Polym. 2010, 81, 243. https://doi.org/10.1016/j.carbpol.2010.02.026
  38. Gan, Q.; Wang, T.; Cochrane, C.; McCarron, P. Colloids Surf. B Biointerfaces 2005, 44, 65. https://doi.org/10.1016/j.colsurfb.2005.06.001
  39. Huang, H.; Yang, X. Biomacromolecules 2004, 5, 2340. https://doi.org/10.1021/bm0497116
  40. Duarte, M. L.; Ferreira, M. C.; Marvão, M. R.; Rocha, J. Int. J. Biol. Macromol. 2002, 31, 1. https://doi.org/10.1016/S0141-8130(02)00039-9
  41. Knaul, J. Z.; Hudson, S. M.; Creber, K. A. M. J. Appl. Polym. Sci. 1999, 72, 1721. https://doi.org/10.1002/(SICI)1097-4628(19990624)72:13<1721::AID-APP8>3.0.CO;2-V
  42. Wannachaiyasit, S.; Chanvorachote, P.; Nimmannit, U. AAPS Pharm. Sci. Tech. 2008, 9, 840. https://doi.org/10.1208/s12249-008-9122-0
  43. Xu, Y.; Du, Y. Int. J. Pharm. 2003, 250, 215. https://doi.org/10.1016/S0378-5173(02)00548-3

Cited by

  1. Recovery of Chromium(III) from Tannery Wastewater by Nanoparticles and Whiskers of Chitosan pp.1572-8900, 2018, https://doi.org/10.1007/s10924-016-0926-9
  2. Chitosan-based nanoparticles as drug delivery systems: a review on two decades of research pp.1029-2330, 2018, https://doi.org/10.1080/1061186X.2018.1512112
  3. Nanochitosan: Commemorating the Metamorphosis of an ExoSkeletal Waste to a Versatile Nutraceutical vol.11, pp.3, 2013, https://doi.org/10.3390/nano11030821