• Title/Summary/Keyword: approximate algorithm

Search Result 699, Processing Time 0.026 seconds

A low-cost compensated approximate multiplier for Bfloat16 data processing on convolutional neural network inference

  • Kim, HyunJin
    • ETRI Journal
    • /
    • v.43 no.4
    • /
    • pp.684-693
    • /
    • 2021
  • This paper presents a low-cost two-stage approximate multiplier for bfloat16 (brain floating-point) data processing. For cost-efficient approximate multiplication, the first stage implements Mitchell's algorithm that performs the approximate multiplication using only two adders. The second stage adopts the exact multiplication to compensate for the error from the first stage by multiplying error terms and adding its truncated result to the final output. In our design, the low-cost multiplications in both stages can reduce hardware costs significantly and provide low relative errors by compensating for the error from the first stage. We apply our approximate multiplier to the convolutional neural network (CNN) inferences, which shows small accuracy drops with well-known pre-trained models for the ImageNet database. Therefore, our design allows low-cost CNN inference systems with high test accuracy.

Introduction and Performance Analysis of Approximate Message Passing (AMP) for Compressed Sensing Signal Recovery (압축 센싱 신호 복구를 위한 AMP(Approximate Message Passing) 알고리즘 소개 및 성능 분석)

  • Baek, Hyeong-Ho;Kang, Jae-Wook;Kim, Ki-Sun;Lee, Heung-No
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.11
    • /
    • pp.1029-1043
    • /
    • 2013
  • We introduce Approximate Message Passing (AMP) algorithm which is one of the efficient recovery algorithms in Compressive Sensing (CS) area. Recently, AMP algorithm has gained a lot of attention due to its good performance and yet simple structure. This paper provides not only a understanding of the AMP algorithm but its relationship with a classical (Sum-Product) Message Passing (MP) algorithm. Numerical experiments show that the AMP algorithm outperforms the classical MP algorithms in terms of time and phase transition.

Approximate Optimization with Discrete Variables of Fire Resistance Design of A60 Class Bulkhead Penetration Piece Based on Multi-island Genetic Algorithm (다중 섬 유전자 알고리즘 기반 A60 급 격벽 관통 관의 방화설계에 대한 이산변수 근사최적화)

  • Park, Woo-Chang;Song, Chang Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.6
    • /
    • pp.33-43
    • /
    • 2021
  • A60 class bulkhead penetration piece is a fire resistance system installed on a bulkhead compartment to protect lives and to prevent flame diffusion in a fire accident on a ship and offshore plant. This study focuses on the approximate optimization of the fire resistance design of the A60 class bulkhead penetration piece using a multi-island genetic algorithm. Transient heat transfer analysis was performed to evaluate the fire resistance design of the A60 class bulkhead penetration piece. For approximate optimization, the bulkhead penetration piece length, diameter, material type, and insulation density were considered discrete design variables; moreover, temperature, cost, and productivity were considered constraint functions. The approximate optimum design problem based on the meta-model was formulated by determining the discrete design variables by minimizing the weight of the A60 class bulkhead penetration piece subject to the constraint functions. The meta-models used for the approximate optimization were the Kriging model, response surface method, and radial basis function-based neural network. The results from the approximate optimization were compared to the actual results of the analysis to determine approximate accuracy. We conclude that the radial basis function-based neural network among the meta-models used in the approximate optimization generates the most accurate optimum design results for the fire resistance design of the A60 class bulkhead penetration piece.

A fast approximate fitting for mixture of multivariate skew t-distribution via EM algorithm

  • Kim, Seung-Gu
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.2
    • /
    • pp.255-268
    • /
    • 2020
  • A mixture of multivariate canonical fundamental skew t-distribution (CFUST) has been of interest in various fields. In particular, interest in the unsupervised learning society is noteworthy. However, fitting the model via EM algorithm suffers from significant processing time. The main cause is due to the calculation of many multivariate t-cdfs (cumulative distribution functions) in E-step. In this article, we provide an approximate, but fast calculation method for the in univariate fashion, which is the product of successively conditional univariate t-cdfs with Taylor's first order approximation. By replacing all multivariate t-cdfs in E-step with the proposed approximate versions, we obtain the admissible results of fitting the model, where it gives 85% reduction time for the 5 dimensional skewness case of the Australian Institution Sport data set. For this approach, discussions about rough properties, advantages and limits are also presented.

Automatic Detection of Left Ventricular Contour from 2-D Echocardiograms using Fuzzy Hough Transform (퍼지 Hough 변환에 의한 2-D 심초음파도에서의 좌심실 윤곽 자동검출)

  • ;K.P
    • Journal of Biomedical Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.115-124
    • /
    • 1992
  • An algorithm has been proposed for the automatic detection of optimal epiand endocardial left ventricular borders from 2-D short axis echocardiogram which is degraded by noise and echo drop out. For the implementation of the algorithm, we modified Ballard's Generalized Hough Transform which can be applicable only for deterministic object border, and newly proposed Fuzzy Hough Transform method. The algorithm presented here allows detection of object whose exact shapes are unknown. The algorithm only requires an approximate model of target object based on anatomical data. To detect the approximate epicardial contour of left ventricle, Fuzzy Hough Transform was applied to the echocardiogram. The optimal epicardial contour was founded by using graph searching method which contains cost function analysis process. Using this optimal epicardial contour and average thickness imformation of left ventricular wall, the approximate endocardial line was founded, and graph searching method was also used to detect optimal endocardial contour.

  • PDF

Approximate Clustering on Data Streams Using Discrete Cosine Transform

  • Yu, Feng;Oyana, Damalie;Hou, Wen-Chi;Wainer, Michael
    • Journal of Information Processing Systems
    • /
    • v.6 no.1
    • /
    • pp.67-78
    • /
    • 2010
  • In this study, a clustering algorithm that uses DCT transformed data is presented. The algorithm is a grid density-based clustering algorithm that can identify clusters of arbitrary shape. Streaming data are transformed and reconstructed as needed for clustering. Experimental results show that DCT is able to approximate a data distribution efficiently using only a small number of coefficients and preserve the clusters well. The grid based clustering algorithm works well with DCT transformed data, demonstrating the viability of DCT for data stream clustering applications.

Biased PNG for Approximate Target Adaptive Guidance

  • Song chanho;Kim, philsung;Jun byungeul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.141.2-141
    • /
    • 2001
  • An approximate target adaptive guidance algorithm(TAG) is proposed on the basis of the assumption that angular acceleration of missile to target line-of-sight and start time for TAG can be obtained by IR seeker. The algorithm does not use any target state estimator. Instead, it avoids the problem of determining target attitude by using the observation that the missile using LOS rate guidance is nearly on the collision course in the later point of engagement. Computer simulation results show that the proposed algorithm can effectively perform target adaptive guidance.

  • PDF

(Continuous-Time Queuing Model and Approximation Algorithm of a Packet Switch under Heterogeneous Bursty Traffic) (이질적 버스트 입력 트래픽 환경에서 패킷 교환기의 연속 시간 큐잉 모델과 근사 계산 알고리즘)

  • 홍석원
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.3
    • /
    • pp.416-423
    • /
    • 2003
  • This paper proposes a continuous-time queuing model of a shared-buffer packet switch and an approximate algorithm. N arrival processes have heterogeneous busty traffic characteristics. The arrival processes are modeled by Coxian distribution with order 2 that is equivalent to Interruped Poisson Process. The service time is modeled by Erlang distribution with r stages. First the approximate algorithm performs the aggregation of N arrival processes as a single state variable. Next the algorithm discompose the queuing system into N subsystems which are represented by aggregated state variables. And the balance equations based on these aggregated state variables are solved for by iterative method. Finally the algorithm is validated by comparing the results with those of simulation.

Analytical Approximation Algorithm for the Inverse of the Power of the Incomplete Gamma Function Based on Extreme Value Theory

  • Wu, Shanshan;Hu, Guobing;Yang, Li;Gu, Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.12
    • /
    • pp.4567-4583
    • /
    • 2021
  • This study proposes an analytical approximation algorithm based on extreme value theory (EVT) for the inverse of the power of the incomplete Gamma function. First, the Gumbel function is used to approximate the power of the incomplete Gamma function, and the corresponding inverse problem is transformed into the inversion of an exponential function. Then, using the tail equivalence theorem, the normalized coefficient of the general Weibull distribution function is employed to replace the normalized coefficient of the random variable following a Gamma distribution, and the approximate closed form solution is obtained. The effects of equation parameters on the algorithm performance are evaluated through simulation analysis under various conditions, and the performance of this algorithm is compared to those of the Newton iterative algorithm and other existing approximate analytical algorithms. The proposed algorithm exhibits good approximation performance under appropriate parameter settings. Finally, the performance of this method is evaluated by calculating the thresholds of space-time block coding and space-frequency block coding pattern recognition in multiple-input and multiple-output orthogonal frequency division multiplexing. The analytical approximation method can be applied to other related situations involving the maximum statistics of independent and identically distributed random variables following Gamma distributions.

Approximate Approach to Calculating the Order Fill Rate under Purchase Dependence (구매종속성이 존재하는 상황에서 주문충족율을 계산하는 근사법에 관한 연구)

  • Park, Changkyu;Seo, Junyong
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.41 no.2
    • /
    • pp.35-51
    • /
    • 2016
  • This paper proposes a new approximate approach to calculate the order fill rate and the probability of filling an entire customer order immediately from the shelf in a business environment under purchase dependence characterized by customer purchase patterns observed in such areas as marketing, manufacturing systems, and distribution systems. The new approximate approach divides customer orders into item orders and calculates fill rates of all order types to approximate the order fill rate. We develop a greed iterative search algorithm (GISA) based on the Gauss-Seidel method to avoid dimensionality and prevent the solution divergence for larger instances. Through the computational analysis that compares the GISA with the simulation, we demonstrate that the GISA is a dependable algorithm for deriving the stationary joint distribution of on-hand inventories in the type-K pure system. We also present some managerial insights.