• 제목/요약/키워드: approach time

검색결과 10,334건 처리시간 0.041초

Data-driven approach to machine condition prognosis using least square regression trees

  • Tran, Van Tung;Yang, Bo-Suk;Oh, Myung-Suck
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.886-890
    • /
    • 2007
  • Machine fault prognosis techniques have been considered profoundly in the recent time due to their profit for reducing unexpected faults or unscheduled maintenance. With those techniques, the working conditions of components, the trending of fault propagation, and the time-to-failure are forecasted precisely before they reach the failure thresholds. In this work, we propose an approach of Least Square Regression Tree (LSRT), which is an extension of the Classification and Regression Tree (CART), in association with one-step-ahead prediction of time-series forecasting technique to predict the future conditions of machines. In this technique, the number of available observations is firstly determined by using Cao's method and LSRT is employed as prognosis system in the next step. The proposed approach is evaluated by real data of low methane compressor. Furthermore, the comparison between the predicted results of CART and LSRT are carried out to prove the accuracy. The predicted results show that LSRT offers a potential for machine condition prognosis.

  • PDF

건설 차량 실시간 그래픽 주행 시뮬레이터 (A Real-Time Graphic Driving Simulator of the Construction Vehicle)

  • 손권;최경현;유창훈
    • 한국정밀공학회지
    • /
    • 제16권7호
    • /
    • pp.109-118
    • /
    • 1999
  • A graphic software is one of the most important components of the vehicle simulator. To increase a visual reality of the simulator, the graphic software should require several technologies such as three-dimensional graphics, graphic modeling of the vehicle and the environment, drivers biomechanical models, and real-time data processing. This study presents a real time graphic driving simulator of a construction vehicle. The graphic simulator contains the three models of the construction vehicle, the human, and the environment, and employes a neural network approach to decrease an on-line dynamic computation. An excavator model is represented using an object-oriented paradigm and contains the detailed information about a real-size vehicle. The human model is introduced for objective visual evaluations of the developed excavator model. Since the environment model plays an important role in a real-time simulator, a block-based approach is implemented and a text format is utilized for easier construction of environment. The simulation results are illustrated in order to demonstrate the applicability of developed models and the neural network approach.

  • PDF

Wind fragility analysis of RC chimney with temperature effects by dual response surface method

  • Datta, Gaurav;Sahoo, Avinandan;Bhattacharjya, Soumya
    • Wind and Structures
    • /
    • 제31권1호
    • /
    • pp.59-73
    • /
    • 2020
  • Wind fragility analysis (WFA) of concrete chimney is often executed disregarding temperature effects. But combined wind and temperature effect is the most critical limit state to define the safety of a chimney. Hence, in this study, WFA of a 70 m tall RC chimney for combined wind and temperature effects is explored. The wind force time-history is generated by spectral representation method. The safety of chimney is assessed considering limit states of stress failure in concrete and steel. A moving-least-squares method based dual response surface method (DRSM) procedure is proposed in WFA to alleviate huge computational time requirement by the conventional direct Monte Carlo simulation (MCS) approach. The DRSM captures the record-to-record variation of wind force time-histories and uncertainty in system parameters. The proposed DRSM approach yields fragility curves which are in close conformity with the most accurate direct MCS approach within substantially less computational time. In this regard, the error by the single-level RSM and least-squares method based DRSM can be easily noted. The WFA results indicate that over temperature difference of 150℃, the temperature stress is so pronounced that the probability of failure is very high even at 30 m/s wind speed. However, below 100℃, wind governs the design.

An improved approach to evaluate the compaction compensation grouting efficiency in sandy soils

  • Xu, Xiang-Hua;Xiang, Zhou-Chen;Zou, Jin-Feng;Wang, Feng
    • Geomechanics and Engineering
    • /
    • 제20권4호
    • /
    • pp.313-322
    • /
    • 2020
  • This study focuses on a prediction approach of compaction compensation grouting efficiency in sandy soil. Based on Darcy's law, assuming that the grouting volume is equal to the volume of the compressed soil, a two-dimensional calculation model of the compaction compensation grouting efficiency was improved to three-dimensional, which established a dynamic relationship between the radius of the grout body and the grouting time. The effectiveness of this approach was verified by finite element analysis. The calculation results show that the grouting efficiency decreases with time and tends to be stable. Meanwhile, it also indicates that the decrease of grouting efficiency mainly occurs in the process of grouting and will continue to decline in a short time after the completion of grouting. The prediction three-dimensional model proposed in this paper effectively complements the dynamic relationship between grouting compaction radius and grouting time, which can more accurately evaluate the grouting efficiency. It is practically significant to ensure construction safety, control grouting process, and reduce the settlement induced by tunnel excavation.

프리아크 개념을 이용한 로봇의 충돌회피 동작 계획 (Collision-Free Motion Planning of a Robot Using Free Arc concept)

  • 이석원;남윤석;이범희
    • 제어로봇시스템학회논문지
    • /
    • 제6권3호
    • /
    • pp.317-328
    • /
    • 2000
  • This paper presents an effective approach to collision-free motion planning of a robot in the work-space including time-varying obstacles. The free arc is defined as a set composed of the configuration points of the robot satisfying collision-free motion constraint at each sampling time. We represent this free arc with respect to the new coordinate frame centered at the goal configuration and there for the collision-free path satisfying motion constraint is obtained by connecting the configuration points of the free arc at each sampling mined from the sequence of free arcs the optimality is determined by the performance index. Therefore the complicated collision-free motion planning problem of a robot is transformed to a simplified SUB_Optimal Collision Avoidance Problem(SOCAP). We analyze the completeness of the proposed approach and show that it is partly guaranteed using the backward motion. Computational complexity of our approach is analyzed theoretically and practical computation time is compared with that of the other method. Simulation results for two cally and practical computation time is compared with that of the other method. Simulation results for two SCARA robot manipulators are presented to verify the efficacy of the proposed method.

  • PDF

SoC FPGA 기반 실시간 객체 인식 및 추적 시스템 구현 (An Implementation of SoC FPGA-based Real-time Object Recognition and Tracking System)

  • 김동진;주연정;박영석
    • 대한임베디드공학회논문지
    • /
    • 제10권6호
    • /
    • pp.363-372
    • /
    • 2015
  • Recent some SoC FPGA Releases that integrate ARM processor and FPGA fabric show better performance compared to the ASIC SoC used in typical embedded image processing system. In this study, using the above advantages, we implement a SoC FPGA-based Real-Time Object Recognition and Tracking System. In our system, the video input and output, image preprocessing process, and background subtraction processing were implemented in FPGA logics. And the object recognition and tracking processes were implemented in ARM processor-based programs. Our system provides the processing performance of 5.3 fps for the SVGA video input. This is about 79 times faster processing power than software approach based on the Nios II Soft-core processor, and about 4 times faster than approach based the HPS processor. Consequently, if the object recognition and tracking system takes a design structure combined with the FPGA logic and HPS processor-based processes of recent SoC FPGA Releases, then the real-time processing is possible because the processing speed is improved than the system that be handled only by the software approach.

An Overview of Flutter Prediction in Tests Based on Stability Criteria in Discrete-Time Domain

  • Matsuzaki, Yuji
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제12권4호
    • /
    • pp.305-317
    • /
    • 2011
  • This paper presents an overview on flutter boundary prediction in tests which is principally based on a system stability measure, named Jury's stability criterion, defined in the discrete-time domain, accompanied with the use of autoregressive moving-average (AR-MA) representation of a sampled sequence of wing responses excited by continuous air turbulences. Stability parameters applicable to two-, three- and multi-mode systems, that is, the flutter margin for discrete-time systems derived from Jury's criterion are also described. Actual applications of these measures to flutter tests performed in subsonic, transonic and supersonic wind tunnels, not only stationary flutter tests but also a nonstationary one in which the dynamic pressure increased in a fixed rate, are presented. An extension of the concept of nonstationary process approach to an analysis of flutter prediction of a morphing wing for which the instability takes place during the process of structural morphing will also be mentioned. Another extension of analytical approach to a multi-mode aeroelastic system is presented, too. Comparisons between the prediction based on the digital techniques mentioned above and the traditional damping method are given. A future possible application of the system stability approach to flight test will be finally discussed.

효율적인 내용 기반 이미지 검색을 위한 근사 Earth Mover's Distance (Earth Mover's Distance Approximate Earth Mover's Distance for the Efficient Content-based Image Retreival)

  • 장민희;김상욱
    • 정보처리학회논문지D
    • /
    • 제18D권5호
    • /
    • pp.323-328
    • /
    • 2011
  • 정확한 내용 기반 이미지 검색을 위하여 Earth mover's distance와 Optimal color composition distance와 같은 거리함수들이 제안되었다. 이 거리함수들은 정확도가 높은 검색 결과를 가져오지만 검색 시간이 매우 크기 때문에 대용량 데이터베이스에서 사용하기 어렵다는 문제점을 가지고 있다. 본 논문에서는 이러한 문제를 해결하기 위하여 선형 시간에 근사 Earth mover's distance를 구하기 위한 새로운 거리 함수를 제안한다. 제안하는 방법은 선형 시간에 두 이미지의 거리를 계산하기 위하여 공간 채움 곡선을 이용한다. 다양한 실험을 통하여 본 논문에서 제안하는 방법의 우수성을 검증한다. 실험 결과, 제안하는 기법이 Earth mover's distance에 비해 약 160배 정도의 검색 속도 향상 효과를 보이면서도 매우 유사한 결과를 검색하는 것으로 나타났다.

A new damage index for detecting sudden change of structural stiffness

  • Chen, B.;Xu, Y.L.
    • Structural Engineering and Mechanics
    • /
    • 제26권3호
    • /
    • pp.315-341
    • /
    • 2007
  • A sudden change of stiffness in a structure, associated with the events such as weld fracture and brace breakage, will cause a discontinuity in acceleration response time histories recorded in the vicinity of damage location at damage time instant. A new damage index is proposed and implemented in this paper to detect the damage time instant, location, and severity of a structure due to a sudden change of structural stiffness. The proposed damage index is suitable for online structural health monitoring applications. It can also be used in conjunction with the empirical mode decomposition (EMD) for damage detection without using the intermittency check. Numerical simulation using a five-story shear building under different types of excitation is executed to assess the effectiveness and reliability of the proposed damage index and damage detection approach for the building at different damage levels. The sensitivity of the damage index to the intensity and frequency range of measurement noise is also examined. The results from this study demonstrate that the damage index and damage detection approach proposed can accurately identify the damage time instant and location in the building due to a sudden loss of stiffness if measurement noise is below a certain level. The relation between the damage severity and the proposed damage index is linear. The wavelet-transform (WT) and the EMD with intermittency check are also applied to the same building for the comparison of detection efficiency between the proposed approach, the WT and the EMD.

A Computational Interactive Approach to Multi-agent Motion Planning

  • Ji, Sang-Hoon;Choi, Jeong-Sik;Lee, Beom-Hee
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권3호
    • /
    • pp.295-306
    • /
    • 2007
  • It is well known that mathematical solutions for multi-agent planning problems are very difficult to obtain due to the complexity of mutual interactions among multi-agents. Most of the past research results are thus based on the probabilistic completeness. However, the practicality and effectiveness of the solution from the probabilistic completeness is significantly reduced by heavy computational burden. In this paper, we propose a practically applicable solution technique for multi-agent planning problems, which assures a reasonable computation time and a real world application for more than 3 multi-agents, for the case of general shaped paths in agent movement. First, to reduce the computation time, an extended collision map is developed and utilized for detecting potential collisions and obtaining collision-free solutions for multi-agents. Second, a priority for multi-agents is considered for successive and interactive modifications of the agent movements with lower priority. Various solutions using speed reduction and time delay of the relevant agents are investigated and compared in terms of the computation time. A practical implementation is finally provided for three different types of agents to emphasize the effectiveness of the proposed interactive approach to multi-agent planning problems.