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ABSTRACT 
 

Machine fault prognosis techniques have been considered profoundly in the recent time due to their profit for 
reducing unexpected faults or unscheduled maintenance. With those techniques, the working conditions of components, 
the trending of fault propagation, and the time-to-failure are forecasted precisely before they reach the failure thresholds. 
In this work, we propose an approach of Least Square Regression Tree (LSRT), which is an extension of the 
Classification and Regression Tree (CART), in association with one-step-ahead prediction of time-series forecasting 
technique to predict the future conditions of machines. In this technique, the number of available observations is firstly 
determined by using Cao’s method and LSRT is employed as prognosis system in the next step. The proposed approach 
is evaluated by real data of low methane compressor. Furthermore, the comparison between the predicted results of 
CART and LSRT are carried out to prove the accuracy. The predicted results show that LSRT offers a potential for 
machine condition prognosis. 
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1. Introduction 

Most of the components in machine are degraded 
condition during operation due to wear which is the 
major reason causing machine breakdown. Maintenance 
is the set of activities performed on a machine to sustain 
it on operable condition. The most common maintenance 
strategy is the corrective maintenance which almost 
means “fix it when it breaks”. However, this strategy 
reduces the availability of machine and high unscheduled 
downtime. Condition-based maintenance (CBM) which 
involves diagnostic module and prognostic module is an 
alternative. Prognosis is the ability to access the current 
state, forecast the future state, and predict accurately the 
time-to-failure or the remaining useful life (RUL) of a 
failing components or subsystems. RUL is the time left 
for the normal operation of machine before the 
breakdown occurs or machine condition reaches the 
critical failure threshold. 

Prognosis is a relatively new area and becomes a 
significant part of CBM [1]. Various approaches to 
prognosis have been developed that range in fidelity 
from simple historical failure rate models to high-fidelity 
physics-based models. Fig. 1 illustrates the hierarchy of 
potential prognostic approaches related to their 
applicability and relative accuracy as well as their 
complexity. Each of those approaches has advantages 
and limitations in application. For example, experience- 
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Fig. 1 Fidelity of prognostic approaches 
 
based prognosis is the least complex, however, it is only 
utilized in situations where the prognostic model is not 
warranted due to low failure occurrence rate; trend-based 
prognosis may be implemented on the subsystems with 
slow degradation type faults [2]. 

Data-driven and model-based techniques are much 
considered due to their accuracy. Nevertheless, model-
based techniques require accurate mathematical models 
of failure modes and are merely applied in some specific 
components in which each of them needs different model. 
Furthermore, a suitable model is also difficult to establish 
to mimic the real life. Meanwhile, data-driven techniques 
can generate the flexible and appropriate models for 
almost failure modes. Consequently, data-driven approaches 
are firstly examined that some of those have been 
proposed [3-6]. 

In order to predict the condition of machines, one-
step-ahead or multi-step-ahead predictions of time-series 
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forecasting techniques is frequently used. They imply 
that the prognostic system utilizes available observations 
to forecast one value or multiple values at the definite 
future time. The more the steps ahead are, the less reliable 
is the forecasting operation because multi-step prediction 
is associated with multiple one-step operations [6]. 

In data-driven approaches, the number of essential 
observations, so-called embedding dimension d, is used 
for forecasting the future value. It should be chosen large 
enough so that the estimator can forecast accurately the 
future value and not too large to avoid the unnecessary 
increase in computational complexity. False nearest 
neighbor method (FNN) [7] and Cao’s method [8] are 
commonly used to determine the embedding dimension. 
However, FNN method not only depends on chosen 
parameters and the number of available observations but 
also is sensitive to additional noise. Cao’s method 
overcomes the shortcomings of the FNN approach and 
therefore, it is chosen in this study. 

The CART [9] is widely implemented in machine 
fault diagnosis. In the prediction techniques, CART is 
also applied to forecast the short-term load of the power 
system [10]. Nevertheless, the average value of samples 
in each terminal node used as predicted result is the 
reason for reducing the accuracy of CART. Several 
approaches have been proposed to ameliorate that 
CART’s limitation [12-14]. In this article, we suggest the 
use of LSRT which is an extension of the CART as an 
estimator for predicting the conditions of machine. 

2. Background knowledge 

2.1 Determine the embedding dimension 
 
Assuming a time-series of x1, x2, …, xN. The time 

delay vector is defined as follows: 
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where τ is the time delay. Defining the quantity as 
follows: 
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where ||⋅|| is the Euclidian distance and is given by the 
maximum norm, yi(d) means the ith reconstructed vector 
and n(i, d) is an integer such that yn(i,d)(d) is the nearest 
neighbor of yi(d) in the embedding dimension d. In order 
to avoid the problems encountered in FNN method, the 
new quantity is defined as the mean value of all a(i, d)’s: 
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E(d) is dependent on only the dimension d and the time 
delay τ. To investigate its variation from d to d+1, the 
parameter E1 is given by 
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By increasing the value of d, the value E1(d) is also 

increased and it stops when the time series comes from a 
deterministic process. If a plateau is observed for d ≥ d0, 
d0 + 1 is the minimum embedding dimension. 

The Cao’s method also introduced another quantity 
E2(d) in case that E1(d) is slowly increasing or has 
stopped changing if d is large enough: 
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2.2 Least square regression trees 
 

The CART [16] involves classification tree and 
regression tree. The classification tree deals with a 
qualitative output variable whilst the regression tree 
handles a quantitative one. Given a data set comprised n 
couples of observation ),(),...,,( 11 nnyy xx , where 

),...,( 1 idii xx=x is a set of independent variables and 

Ryi ∈  is a response associated with xi, the regression 
tree is constructed by using recursively partitioning 
process of this data set into two descendant subsets 
which are as homogeneous as possible until the terminal 
nodes are achieved. 

The split values for partitioning process are chosen so 
that the sums of square errors are minimum. The sum of 
square error of the tth subset is expressed as: 
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where )(ty and n are the mean value of response and the 
number of samples in that subset, respectively. At each 
terminal node, the predicted response is estimated by the 
average of all values of the response variables associated 
to that node. This issue reduces the accurate prediction 
significantly. 

In the LSRT, the average of response at any node is 
replaced by the local model ),( if xθ which shows the 
relationship between the response yi and a set of 
independent variable xi. Hence, the sum of square error 
of the tth node (subset) can be rewritten as: 
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where θ is a set of parameters. The local models ),( if xθ  
can be either linear or non-linear model in which the 
forms are known with unknown values of parameters as 
shown in Table 1 
 

Table 1 Local model types in LSRT 
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Those local models are organized as a set of models. 

At any node, the values of parameters of each model are 
initially calculated by using least square method [11], the 
fit model are subsequently chosen based on the sum of 
squares due to error (SSE) and the root mean squared 
error (RMSE) criterions: 
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where yi and iŷ  are response value and predicted value 
given by local model at that node, respectively. 
Consequently, the outputs of terminal nodes are local 
models that lead to more accurate prediction. 

Similarly to CART, LSRT is also pruned in order to 
avoid the overfitting and complicated problems. In this 
work, we use 10 cross-validations to select the best tree 
size. 

3. Proposed system 

Normally when a fault occurs, the conditions of 
machine can be identified by the change in vibration 
amplitude. In order to predict the future state based on 
available vibration data, the proposed system as shown in 
Fig. 2 which consists of four procedures is proposed. 
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Fig. 2 Proposed system for machine fault prognosis. 
 
The role of each procedure is explained as follows: 
Step 1 Data acquisition: acquiring vibration signal 

during the running process of the machine until faults 
occur. 

Step 2 Data splitting: the trending data is split into 
two parts: training data for building the model and 
testing data for testing the validated model. 

Step 3 Training-validating: determining the embedding 
dimension based on Cao’s method, building the model 
and validating the model for measuring the performance 
capability. 

Step 4 Predicting: one-step-ahead prediction is used 
to forecast the future value. The predicted result is 
measured by the error between predicted value and 
actual value in the testing data. If the prediction is 
successful, the result obtained from this procedure is the 
prognosis system. 

4. Experiments and results 

The proposed method is applied to real system to 
predict the trending data of a low methane compressor. 
This compressor shown in Fig. 3 and its specification is 
summarized in Table 2. 

 

Male rotor axial

Male rotor horizontal
Motor DE/NDE horizontal

Motor DE/NDE vertical

Motor DE/NDE axial

Male rotor vertical

Suction vertical,
horizontal, axial

Symptom sensing

CMS Off-line monitoring (100mV/g acceleration)

CMS Off-line monitoring (100mV/g acceleration)
(Only horizontal)  

Fig. 3 Low methane compressor. 

888



   
 

 

Table 2 Description of system 

Electric motor Compressor 
Voltage 6600 V Type Wet screw 
Power 440 kW Male rotor(4 lobes)

Pole 2 Pole Lobe Female rotor 
(6 lobes) 

Bearing NDE:#6216 
DE:#6216 Thrust: 7321 BDB

RPM 3565 rpm 
Bearing 

Radial: Sleeve type
 
The data applied in this study is peak acceleration and 

envelope acceleration trending data recorded from 
August 2005 to November 2005 as shown in Figs. 4 and 
5. Consequently, it can be seen as time-series data. 

The machine is in normal condition during the first 
300 points. After that time, the condition of machine 
suddenly changes indicating some faults occurring in this 
machine. With the aim of forecasting the change of 
machine condition, the first 300 points were used to train 
the system and the following 200 points were employed 
for testing system. 
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Fig. 4 The entire of peak acceleration data  

of low methane compressor. 
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Fig. 5 The entire of envelope acceleration data  

of low methane compressor. 
 

The predicting performance is evaluated by using the 
RMSE given in Eq. (9). The time delay value is chosen 
as 1 for the reason that one step-ahead is implemented in 
all datasets. The embedding dimension is estimated to be 
6 when the values of E1(d) reaches its saturation as 
depicted in Fig. 6. 
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Fig. 6 The values of E1 and E2 of peak acceleration 

data of low methane compressor. 
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Fig. 7 Training and validating results  

of peak acceleration data. 
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Fig. 8 Predicted results of peak acceleration data  

using LSRT.  
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Fig. 9 Predicted results of peak acceleration data  

using CART. 
 

Fig. 7 depicts the training and validating results of 
peak acceleration data with a small RMSE value of 
0.00118. In testing process, the independent data set 
contained the changing machine condition is used.  
Fig.8 shows the actual-like predicted results with the 
RMSE error of 0.049027 although the predicting model 
was not trained with those changing values. That is 
impossible to obtain with CART as shown in Fig. 9. 

 
Table 3 The RMSE of CART and LSRT 

Training Testing Data type 
CART LSRT CART LSRT 

Peak 
acceleration 0.00062 0.0011 0.1855 0.049 

Envelop 
acceleration 0.00028 0.00015 0.1429 0.101 

 
Table 3 shows not only the remaining results of 

applying LSRT on envelop acceleration data but also the 
comparison of the RSME between CART and LSRT. 
According to table 3, training results of CART are 
sometimes slightly smaller than those of LSRT but the 
testing results of CART are always larger. This shows the 
superior of LSRT in aspect of machine condition 
prognosis.  

5. Conclusions 

Machine condition prognosis is extremely significant 
in foretelling the degradation of working condition and 
trends of fault propagation before they reach the alarm. 
In this study, the least square regression tree together 
with one-step-ahead of time-series techniques have been 
investigated for machine condition prognosis. The 
proposed method is validated by predicting future state 
condition of a low methane compressor wherein the peak 
acceleration and envelope acceleration have been 
examined. The obtained results confirm that the 
proposed method offers a potential for machine condition 
prognosis with one-step-ahead prediction. 
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