• Title/Summary/Keyword: applied element method

Search Result 3,675, Processing Time 0.035 seconds

A Study on the Possibility of Dye Wastewater Treatment of Electrical Photocatalytic System Using TiO2 nanotube plate (TiO2 nanotube plate를 이용한 전기적광촉매시스템의 염료폐수 처리 가능성 연구)

  • Lee, Yongho;Sun, Minghao;Pak, Daewon
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.5
    • /
    • pp.418-424
    • /
    • 2019
  • In this study, $TiO_2$ nanotubes with different morphologies were prepared in the electrolyte consisting of ethylene glycol, ammonium fluoride($NH_4F$), and deionized water($H_2O$) by controlling the voltage and time in the anodization method. Thicknesses and pore sizes of these $TiO_2$ nanotubes were measured to interpret the relationship between anodization conditions and $TiO_2$ nanotube morphologies. Element contents in the $TiO_2$ nanotubes were detected for further analysis of $TiO_2$ nanotube characteristics. Photoelectrolyticdecolorization efficiencies of the $TiO_2$ nanotube plates with various morphologies were tested to clarify the morphology that a highly active $TiO_2$ nanotube plate should have. Influences of applied voltage in photoelectrolysis processes and sodium sulfate($Na_2SO_4$) concentration in wastewater on the decolorization efficiency were also studied. To save the equipment investment cost in photoelectrolysis methods, a two-photoelectrode system that uses the $TiO_2$ nanotube plates as photoanode and photocathode instead of adding other counter electrodes was studied. Compared with single-photoelectrode system that uses the $TiO_2$ nanotube plate as photoanode and titanium plate as cathode on the view of the treatment of dye wastewater containing different amounts of salt. As a result, a considerably suitable voltage was strictly needed for enhancing the photoelectrolyticdecolorization effect of the two-photoelectrode system but if salts exist in wastewater, an excellent increase in the decolorization efficiency can be obtained.

Numerical Analysis of Wave Energy Extraction Performance According to the Body Shape and Scale of the Breakwater-integrated Sloped OWC

  • Yang, Hyunjai;Min, Eun-Hong;Koo, WeonCheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.296-304
    • /
    • 2021
  • Research on the development of marine renewable energy is actively in progress. Various studies are being conducted on the development of wave energy converters. In this study, a numerical analysis of wave-energy extraction performance was performed according to the body shape and scale of the sloped oscillating water column (OWC) wave energy converter (WEC), which can be connected with the breakwater. The sloped OWC WEC was modeled in the time domain using a two-dimensional fully nonlinear numerical wave tank. The nonlinear free surface condition in the chamber was derived to represent the pneumatic pressure owing to the wave column motion and viscous energy loss at the chamber entrance. The free surface elevations in the sloped chamber were calculated at various incident wave periods. For verification, the results were compared with the 1:20 scaled model test. The maximum wave energy extraction was estimated with a pneumatic damping coefficient. To calculate the energy extraction of the actual size WEC, OWC models approximately 20 times larger than the scale model were calculated, and the viscous damping coefficient according to each size was predicted and applied. It was verified that the energy, owing to the airflow in the chamber, increased as the incident wave period increased, and the maximum efficiency of energy extraction was approximately 40% of the incident wave energy. Under the given incident wave conditions, the maximum extractable wave power at a chamber length of 5 m and a skirt draft of 2 m was approximately 4.59 kW/m.

A Study on the Development of Low-Altitude and Long-Endurance Solar-Powered UAV from Korea Aerospace University (2) - Flight Control and Guidance of Solar Powered UAV - (한국항공대학교 저고도 장기체공 태양광 무인기 개발에 관한 연구 (2) - 태양광 무인기 비행제어 및 유도항법 -)

  • Kim, Taerim;Kim, Doyoung;Jeong, Jaebaek;Moon, Seokmin;Kim, Yongrae;Bae, Jae-Sung;Park, Sanghyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.7
    • /
    • pp.479-487
    • /
    • 2022
  • This paper presents the control and guidance algorithm of a KAU-SPUAV(Korea Aerospace University - Solar Powered Unmanned Aerial Vehicle) which is designed and developed in Korea Aerospace University. Aerodynamic coefficients are calculated using the vortex-lattice method and applied to the aircraft's six degrees of freedom equation. In addition, the thrust and torque coefficients of the propeller are calculated using the blade element theory. An altitude controller using thrust was used for longitudinal control of KAU-SPUAV to glide efficiently when it comes across the upwind. Also describes wind estimation technic for considering wind effect during flight. Finally, introduce some guidance laws for endurance, mission and coping with strong headwinds and autonomous landing.

The Development of Thermal Model for Safety Analysis on Electronics in High-Speed Vehicle (고속 비행체 전자 장비의 안전성 예측을 위한 열해석 모델 구축)

  • Lee, Jin Gwan;Lee, Min Jung;Hwang, Su Kweon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.5
    • /
    • pp.437-446
    • /
    • 2021
  • As flying vehicle's speed is getting faster, the magnitude of aerodynamic heating is getting bigger. High-speed vehicle's exterior skin is heated to hundreds of degrees, and electrical equipments inside the vehicle are heated, simultaneously. Since allowable temperature of electrical equipments is low, they are vulnerable to effect of aerodynamic heating. These days, lots of techniques are applied to estimate temperature of electrical equipments in flight condition, and to make them thermally safe from heating during flight. In this paper, new model building technique for thermal safety analysis is introduced. To understand internal thermal transient characteristic of electrical equipment, simple heating experiment was held. From the result of experiment, we used our new building technique to build thermal analysis model which reflects thermal transient characteristic of original equipment. This model can provide internal temperature differences of electrical equipment and temperature change of specific unit which is thermally most vulnerable part in the equipment. So, engineers are provided much more detailed thermal analysis data for thermal safety of electrical equipment through this technique.

A Study on the Ultra-Small Pendulum Generator Applicable to Wearable IT Device (웨어러블 IT 기기에 적용 가능한 초소형 진자 발전기에 관한 연구)

  • Jee, In-Ho;Shin, Seung-Jung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.139-143
    • /
    • 2022
  • In this study, Among the electromagnetic induction power generation (EMG) techniques, the design specifications of the RFPM were set, and a suitable test prototype was manufactured through finite element analysis (FEM, 2D) required for characteristic calculation. In addition, a dedicated testing device (Dynamo-Tester) was designed and manufactured to measure and analyze the test prototype. The test product was measured with a test device and the result is analyzed to suggest a method that can be applied by generating as much output power as possible to charge the battery of the wearable IT device using actual kinetic energy of the human body. As a result of the test, the output power was 1.679W and the efficiency was 79.31% under the conditions of rotation speed of 780.9rpm, torque of 0.264kgf/cm, and load current of 73.6~73.9mA. Therefore, it was analyzed that it was possible to charge the wearable device with the output of the ultra-small RFPM pendulum generator.

Flexural Analysis of Radiata Pine Plywood Plate for the Concrete Form by the Laminate Plate Theory (적층판이론을 적용한 Radiata Pine 콘크리트 거푸집용 합판의 휨해석)

  • Nam, Jeong-Hun;Son, Kyong-Wook;Yoon, Soon-Jong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.36-45
    • /
    • 2004
  • The plywood for concrete form is regarded as a laminate plate composed of orthotropic materials and the flexural analysis is conducted by applying the laminate plate theory, in which the four edges of the plate is assumed to be simply supported and the concentric point lateral load is applied. The results of flexural experiment are compared with the theoretical ones. Theoretically predicted results coincide with experimental ones up to the point of deflection less than 1/4 of plate thickness. In addition, when the plywood is regarded as an isotropic plate for simple analysis, the geometric average of the elastic modulus measured in the direction parallel to the face grain (E11) and perpendicular to the face grain (E22) could be used for the elastic modulus of isotropic plate.

Creation and Meaning of Local Cultural Contents through Maeul-mandeulgi : Case of Chilgok-gun Yeong ori (공간생산이론을 통해 본 지역문화콘텐츠의 창출 과정과 의미 : 칠곡군 영오리 사례)

  • Lee, Jaemin
    • 지역과문화
    • /
    • v.7 no.1
    • /
    • pp.1-26
    • /
    • 2020
  • This study analyzes the creation process of local cultural contents that appears in the Maeul-mandeulgi by utilizing the "Village Rituals" handed down from village. The purpose is to analyze the social values and meanings they represent. For this purpose, a qualitative research method using Chilgok-gun Yeong-ori was applied and analyzed through Lefebvre's the production of space theory. Residents began to recognize the necessity of projects such as Maeul-mandeulgi to overcome the community crisis, and attempted to change the perception of existing village rituals. Residents began to recognize the need for projects such as Maeul-mandeulgi to overcome the community crisis, Attempts to change the perception of the existing village rituals resulted in spatial practice. The new cultural contents were created by adding a playful element to the existing Cheonwangje, and thereby strengthening the identity of the village. This resulted in the reproduction of the village as a new cultural space, but it showed the reproduction of the space in which the alienation occurred due to excessive physical expansion. However, through this process, villagers increased their sense of belonging and increased their satisfaction, which showed the process of being produced as a space of representation that strengthens the sense of community.

Development of Criteria for Predicting Delamination in Cabinet Walls of Household Refrigerators (냉장고 캐비닛 벽면에서 발생하는 박리현상 예측을 위한 평가 기준 개발에 관한 연구)

  • Park, Jin Seong;Kim, Sung Ik;Lee, Gun Yup;Cho, Jong Rae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.4
    • /
    • pp.1-13
    • /
    • 2022
  • Household refrigerator cabinets must undergo cyclic testing at -20 ℃ and 65 ℃ for quality control (QC) after their production is complete. These cabinets were assembled from different materials, including acrylonitrile butadiene styrene (ABS), polyurethane (PU) foam, and steel plates. However, different thermal expansion values could be observed owing to differences in the mechanical properties of the materials. In this study, a technique to predict delamination on a refrigerator wall caused by thermal deformation was developed. The mechanical properties of ABS and PU foams were tested, theload factors causing delamination were analyzed, delamination was observed using a high-speed camera, and comparison and verification in terms of stress and strain were performed using a finite element model (FEM). The results indicated that the delamination phenomenon of a refrigerator wall can be defined in two cases. A method for predicting and evaluating delamination was established and applied in an actual refrigerator. To determine the effect of temperature changes on the refrigerator, strain measurements were performed at the weak point and the stress was calculated. The results showed that the proposed FEM prediction technique can be used as a basis for virtual testing to replace future QC testing, thus saving time and cost.

Effects of inclined bedrock on dissimilar pile composite foundation under vertical loading

  • Kaiyu, Jiang;Weiming, Gong;Jiang, Xu;Guoliang, Dai;Xia, Guo
    • Geomechanics and Engineering
    • /
    • v.31 no.5
    • /
    • pp.477-488
    • /
    • 2022
  • Pile composite foundation (PCF) has been commonly applied in practice. Existing research has focused primarily on semi-infinite media having equal pile lengths with little attention given to the effects of inclined bedrock and dissimilar pile lengths. This investigation considers the effects of inclined bedrock on vertical loaded PCF with dissimilar pile lengths. The pile-soil system is decomposed into fictitious piles and extended soil. The Fredholm integral equation about the axial force along fictitious piles is then established based on the compatibility of axial strain between fictitious piles and extended soil. Then, an iterative procedure is induced to calculate the PCF characteristics with a rigid cap. The results agree well with two field load tests of a single pile and numerical simulation case. The settlement and load transfer behaviors of dissimilar 3-pile PCFs and the effects of inclined bedrock are analyzed, which shows that the embedded depth of the inclined bedrock significantly affects the pile-soil load sharing ratios, non-dimensional vertical stiffness N0/wdEs, and differential settlement for different length-diameter ratios of the pile l/d and pile-soil stiffness ratio k conditions. The differential settlement and pile-soil load sharing ratios are also influenced by the inclined angle of the bedrock for different k and l/d. The developed model helps better understand the PCF characteristics over inclined bedrock under vertical loading.

The Effect of the Artificial Intelligence Storytelling Education Program on the Learning Flow (인공지능 스토리텔링 교육 프로그램이 학습 몰입도에 미치는 영향)

  • JinKwan Kim;Kyujung Han
    • Journal of The Korean Association of Information Education
    • /
    • v.26 no.5
    • /
    • pp.353-360
    • /
    • 2022
  • The purpose of this study is to verify the effect of artificial intelligence storytelling education program designed to help learning artificial intelligence based on storytelling, the most important element of human intelligence, on learning flow. To this end, a 16-hour artificial intelligence education program was designed and developed, and applied over 8 weeks to 19 gifted students in 5th and 6th grades of elementary school. Artificial intelligence storytelling education program was developed in the form of teaching and learning course plans for each class and storybooks. Artificial intelligence storytelling education program application results showed significant improvements in average scores in all 9 sub-factors of learning flow, including combination of challenges and abilities, integration of behavior and consciousness, clear goal, concrete feedback, focus on task, sense of control, loss of self-consciousness, Distortion of the sense of time, and self-purpose experience. In other words, it was confirmed that artificial intelligence storytelling education program was effective in improving learning flow.