적흥판이론을 적용한 Radiata Pine 콘크리트 거푸집용 합판의 횜해석*1

Flexural Analysis of Radiata Pine Plywood Plate for the Concrete Form by the Laminate Plate Theory*1

Jeong-Hun Nam*2† \cdot Kyong-Wook Son*2 ${ }^{* 2}$ Soon-Jong Yoon*2

요 약

콘크리트 거푸집용 합판을 직교이방성재료로 구성된 적층판으로 간주하고 네 변이 단순지지된 판의 중앙에 집중하중이 작용할 경우에 대해 적층판이론을 적용하여 횜거동 해석을 수행하였다. 또한, 판의 휨실험을 통해서 얻은 값을 이론에 의해 추정한 값과 비교, 분석하였다. 비교 분석결과, 처짐이 판 두께의 약 $1 / 4$ 이하에서는 실험 값과 이론값이 잘 일치함을 보였고 그 이상에서는 실험에 의한 처짐이 작게 나타났다. 합판을 둥방성판으로 간주 하여 근사적으로 휨해석을 할 경우 섬유방향의 탄성계수 $\left(\mathrm{E}_{11}\right)$ 와 접선방향의 탄성계수 $\left(\mathrm{E}_{22}\right)$ 의 기하평균값을 판의 탄성계수로 간주하고 해석하는 것이 실제 횜실험값과 잘 일치함을 알 수 있었다.

Abstract

The plywood for concrete form is regarded as a laminate plate composed of orthotropic materials and the flexural analysis is conducted by applying the laminate plate theory, in which the four edges of the plate is assumed to be simply supported and the concentric point lateral load is applied. The results of flexural experiment are compared with the theoretical ones. Theoretically predicted results coincide with experimental ones up to the point of deflection less than $1 / 4$ of plate thickness. In addition, when the plywood is regarded as an isotropic plate for simple analysis, the geometric average of the elastic modulus measured in the direction parallel to the face grain (E_{11}) and perpendicular to the face grain (E_{22}) could be used for the elastic modulus of isotropic plate.

[^0]Keywords: orthotropic, laminate plate theory, flexural analysis, concrete form, experiment, finite element method

1. 서 론

현대와 같은 문명사화에서 콘크리트는 인간의 생활 환경과 뗄 수 없는 중요한 건설재료 중의 하나이다. 이러한 콘크리트를 사용하여 구조물을 만들기 위한 일종의 용기률 거푸집이라고 정의할 수 있으며, 각종 콘크리트 공사에서 다양하게 개발되어 사용되고 있 다. 콘크리트 공사비 중 거푸집 공사비는 약 $30 \sim 50 \%$ 에 이르고 있음에도 불구하고 국내 콘크리트 관련 시 방서에서는 거푸집에 대한 규정이 미홉하며, 자재선 택과 사용이 시공자의 재량에 의한 경우가 많다. 또 한, 거푸집의 부적절한 설계 및 시공 둥으로 인해 콘 크리트 공사현장에서는 빈번한 사고가 발생하여 인명 피해와 경제적 손실을 초래하고 있다. 따라서, 일반적 으로 사용되고 있는 콘크리트 거푸집용 합판을 안전 하고 경제적으로 설계하기 위한 합판의 횜거동에 대 한 연구가 필요하다.

기존 콘크리트 거푸집용 합판의 설계와 생산된 합 판의 품질검사에 적용되는 이론은 합판을 등방성재료 의 보로 간주하여 해석한 결과를 사용하고 있다. 그러 나 목재는 자연상태에 존재하는 대표적인 이방성재료 이고 이와 같은 재료를 사용하여 제작한 합판은 직교 이방성 적층판으로 간주하여 해석하는 것이 보다 합 리적이라고 생각된다. 따라서. 본 연구에서는 적층판 이론을 적용하여 합판의 횜거동을 해석하고 그 결과 를 실제 제작된 판의 횜실험을 통해 얻은 결과와 비 교, 분석하였고, 그 결과를 통하여 합판을 둥방성판으 로 해석하기 위한 역학적 성질(탄성상수)을 매개변수 해석을 통하여 결정하였다.

2. 적층판이론에 의한 휨거동 해석

본 연구의 대상인 합판은 직교이방성재료로 간주할 수 있는 목재로 구성된 얇은 판을 섬유방향의 배열이

Fig. 1. Stacking sequence and angle of plywood.

Fig. 1과 같이 서로 직교하게 배치하여 7층으로 적충 하여 만든 것이며, 구체적인 제작방법은 다음에 기술 하였다.

실제 거푸집의 경우 네 변의 경계조건이 인접판요 소에 의해 탄성구속되어 있고 하중조건 또한 분포하 중이 작용하나, 본 연구의 목적 중의 하나는 둥방성판 으로 해석하기 위한 역학적 성질의 결정에 있으므로 문제를 단순화하기 위해 합판의 경계조건이 단순지지 이고 판의 중앙에 집중하중이 작용하고 있는 경우 판 의 횜거동 해석에 적층판이론을 적용하여 수행하였 다.

2.1. 응력—변형률관계

Hooke의 법칙에 따른 직교이방성재료의 웅력-변형 률관계는 2 차원 판과 같은 평면응력문제의 경우 식 (1)과 같이 나타낼 수 있다 ${ }^{5.7)}$.

$$
\left(\begin{array}{c}
\sigma_{1} \tag{1}\\
\sigma_{2} \\
\tau_{12}
\end{array}\right)=\left[\begin{array}{ccc}
\mathrm{Q}_{11} & \mathrm{Q}_{12} & 0 \\
\mathrm{Q}_{12} & \mathrm{Q}_{22} & 0 \\
0 & 0 & \mathrm{Q}_{66}
\end{array}\right] \cdot\left(\begin{array}{c}
\varepsilon_{11} \\
\varepsilon_{22} \\
\gamma_{12}
\end{array}\right)
$$

여기서, σ, τ 는 수직웅력과 전단웅력이며, ε 과 γ 는 수직웅력과 전단응력에 대응되는 수직변형률과 전 단변형률이다. $Q_{i j}$ 는 공확적 상수로 표현한 강성행렬

로 재료의 역학적 성질 $\left(\mathrm{E}_{11}, \mathrm{E}_{22}, \mathrm{G}_{12}, \mathrm{v}_{12}\right)$ 을 알면 구 할 수 있는데, 재료의 역학적 성질은 다음에 설명한 실험을 통해서 구하였다.
$\mathrm{x}-\mathrm{y}$ 평면에서 임의의 각 θ° 로 변환된 응력-변형률 관계는 식 (2)와 같은 변환행렬을 사용하여 식 (3)과 같은 관계로부터 구할 수 있다.

$$
\begin{gather*}
{[\mathrm{T}]=\left[\begin{array}{ccc}
\cos ^{2} \theta & \sin ^{2} \theta & 2 \cos \theta \sin \theta \\
\sin ^{2} \theta & \cos ^{2} \theta & -2 \cos \theta \sin \theta \\
\cos \theta \sin \theta & \cos \theta \sin \theta & \cos ^{2} \theta-\sin ^{2} \theta
\end{array}\right]} \tag{2}\\
(\sigma)_{x-y}=[\mathrm{T}]^{-1}[\mathrm{Q}][\mathrm{T}](\varepsilon)_{\mathrm{x}-\mathrm{y}} \\
=[\overline{\mathrm{Q}}](\varepsilon)_{\mathrm{x}-\mathrm{y}} \tag{3}
\end{gather*}
$$

여기서, $[\bar{Q}]$ 는 3×3 행렬로 임의 각도에서의 강성행 렬이다

2.2. 합판의 역학적 거동

합판의 역학적 거동을 해석하기 위하여 기준이 되 는 합판의 좌표를 Fig. 1과 같이 설정하였으며, $\mathrm{x}-\mathrm{y}$ 면 $(\mathrm{z}=0)$ 을 중심으로 상하 대칭이다.

Fig. 1과 같은 좌표축을 사용했을 경우 재료가 선형 탄성거동을 할 때, 적층판이론에서의 변형률-변위관 계는 다음과 같은 가정사항을 도입하면 식 (4)와 같 이 간단히 나타낼 수 있다. 즉.

- 중립면에 수직인 면은 변형 후에도 수직을 유지한 다(Kirchhoff's Hypothesis).
- 판의 두께방향의 변형률은 없으며 두께방향의 전단 변형률은 무시한다. 즉, $\varepsilon_{z z}=0, \gamma_{y z}=\gamma_{z x}=0$ 이다.

$$
\begin{align*}
& \varepsilon_{\mathrm{xx}}=\varepsilon_{\mathrm{xx}}^{0}+z \chi_{\mathrm{xx}} \\
& \varepsilon_{\mathrm{yy}}=\varepsilon_{\mathrm{yy}}^{0}+z x_{\mathrm{yy}} \tag{4a,b,c}\\
& \gamma_{\mathrm{xy}}=\gamma_{\mathrm{xy}}^{0}+2 z x_{\mathrm{xy}}
\end{align*}
$$

$$
\varepsilon_{y y}=\varepsilon_{y y}^{0}+z \chi_{y y} \quad(4 \mathrm{a}, \mathrm{~b}, \mathrm{c})
$$

여기서, $\varepsilon_{\mathrm{xx}}^{0}, \varepsilon_{\mathrm{yy}}^{0}, \gamma_{\mathrm{xy}}^{0}$ 는 기준면 $(\mathrm{z}=0)$ 에서의 각 방향에 대한 수직 및 전단변형률이며, $X_{\mathrm{xx}}^{0}, X_{y y}^{0}, X_{\mathrm{xy}}^{0}$ 는

기준면에서의 곡률과 비틀림의 변화량이다.
다음 식 $(5 a, b)$ 는 판의 면내에 발생하는 단위길이 당의 면내력과 면내모멘트를 나타넨 것이다.

$$
\begin{align*}
& \mathrm{N}_{\mathrm{ij}}=\int_{\mathrm{h}_{0}}^{\mathrm{h}_{\mathrm{N}}} \sigma_{\mathrm{ij}} \mathrm{dz} \\
& \mathrm{M}_{\mathrm{ij}}=\int_{\mathrm{h}_{\mathrm{g}}}^{\mathrm{h}_{\mathrm{N}}} z \sigma_{\mathrm{ij}} \mathrm{dz}, \quad \mathrm{i}, \mathrm{j}=\mathrm{x}, \mathrm{y} \tag{5a,b}
\end{align*}
$$

식 ($5 \mathrm{a}, \mathrm{b}$)의 면내력을 식 (3) 의 관계로부터 변형률 로 나타낸 다음 변형을 기준면에서의 변위 $\left(u^{0}, v^{0}\right.$, w^{0})로 나타내면 면내력과 면내모멘트를 다음 식 (6) 과 같이 6×6 행렬식으로 나타널 수 있다.

$$
\left(\begin{array}{l}
\mathrm{N}_{\mathrm{xx}} \tag{6}\\
\mathrm{~N}_{\mathrm{yy}} \\
\mathrm{~N}_{\mathrm{xy}} \\
\mathrm{M}_{\mathrm{xx}} \\
\mathrm{M}_{\mathrm{yy}} \\
\mathrm{M}_{\mathrm{xy}}
\end{array}\right)=\left(\begin{array}{llllll}
\mathrm{A}_{11} & \mathrm{~A}_{12} & \mathrm{~A}_{16} & \mathrm{~B}_{11} & \mathrm{~B}_{12} & \mathrm{~B}_{16} \\
\mathrm{~A}_{12} & \mathrm{~A}_{22} & \mathrm{~A}_{26} & \mathrm{~B}_{12} & \mathrm{~B}_{22} & \mathrm{~B}_{26} \\
\mathrm{~A}_{16} & \mathrm{~A}_{26} & \mathrm{~A}_{66} & \mathrm{~B}_{16} & \mathrm{~B}_{26} & \mathrm{~B}_{66} \\
\mathrm{~B}_{11} & \mathrm{~B}_{12} & \mathrm{~B}_{16} & \mathrm{D}_{11} & \mathrm{D}_{12} & \mathrm{D}_{16} \\
\mathrm{~B}_{12} & \mathrm{~B}_{22} & \mathrm{~B}_{26} & \mathrm{D}_{12} & \mathrm{D}_{22} & \mathrm{D}_{66} \\
\mathrm{D}_{16} & \mathrm{D}_{26} & \mathrm{D}_{66}
\end{array}\right]\left(\begin{array}{c}
\varepsilon_{\mathrm{xx}}^{0} \\
\varepsilon_{\mathrm{yy}}^{0} \\
\gamma_{\mathrm{xy}}^{0} \\
\boldsymbol{x}_{\mathrm{xx}} \\
x_{\mathrm{yy}} \\
2 x_{\mathrm{xy}}
\end{array}\right)
$$

식 (6)에서 A_{j} 는 Extensional Stiffness Matrix이 고, B_{ij} 는 Bending-Stretching Coupling Matrix이며, D_{ij} 는 횜강성행렬(Flexural Stiffness Matrix)이다. 여기서 B_{ij} 는 본 연구에서 적용한 합판과 같이 적층구 조가 기준면을 중심으로 0° 와 90° 로 대칭인 경우. 그 값은 0 이다.
$\mathrm{A}_{\mathrm{ij},} \mathrm{B}_{\mathrm{ij},} \mathrm{D}_{\mathrm{ij}}$ 의 행렬은 계산과정을 프로그램화하여 구하였다. 이때의 입력값은 재료의 역학적 성질 즉, $\mathrm{E}_{11}, \mathrm{E}_{22}, \mathrm{G}_{12}, \mathrm{v}_{12}$ 값이다.

2.3. 합판의 처짐계산

앞 절에서 구한 횜강성행렬값 $\left(\mathrm{D}_{\mathrm{i}}\right)$ 을 횜을 받는 직 교이방성 적층판의 횜거동에 대한 지배미분방정식에 대입하면 판의 처짐값을 계산할 수 있는데, 이에 앞 서, 해석적 연구를 위해서는 고전적 직교이방성 판이 론의 기본가정이 필요하다 ${ }^{2.3)}$.

Fig. 2. Plate under arbitrarily distributed patch load.

직교이방성판의 횜거동에 대한 지배미분방정식은 다음 식 (7)과 같다 ${ }^{2.3)}$.

$$
\begin{array}{r}
\mathrm{D}_{11} \frac{\partial^{4} \mathrm{w}}{\partial \mathrm{x}^{4}}+2\left(\mathrm{D}_{12}+2 \mathrm{D}_{66}\right) \frac{\partial^{4} \mathrm{w}}{\partial \mathrm{x}^{2} \partial \mathrm{y}^{2}} \tag{7}\\
+\mathrm{D}_{22} \frac{\partial^{4} \mathrm{w}}{\partial \mathrm{y}^{4}}=\mathrm{p}(\mathrm{x}, \mathrm{y})
\end{array}
$$

위 식에서 $\mathrm{D}_{11}, \mathrm{D}_{22}$ 는 직교이방성재료의 성질방향 1 (섬유방향), 2 (섬유직각방향)에서의 횜강성이고, D_{66} 는 비틀림강성이다. 그리고 $\mathrm{p}(\mathrm{x}, \mathrm{y})$ 는 Fig. 2에서 보여주고 있는 바와 같이 하중을 나타낸다.
합판의 횜실혐에서 합판의 네 변의 경계조건을 단 순지지된 것으로 간주하였으므로 Navier방법을 사용 할 수 있으며, 따라서 처짐곡선식은 다음 식 (8)과 같 이 Double Fourier Sine Series로 가정할 수 있다 ${ }^{6)}$.

$$
\begin{equation*}
w(x, y)=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} A_{m n} \sin \frac{m \pi x}{a} \sin \frac{n \pi y}{b} \tag{8}
\end{equation*}
$$

여기서, a, b 는 판의 가로, 세로의 크기를 나타내 며, m 과 n 은 x 축과 y 축 방향의 half-sine 처짐꼭선의 수를 나타낸다.
$\mathrm{p}(\mathrm{x}, \mathrm{y})$ 를 임의의 분포하중이라고 가정하면 식 (9) 와 같이 나타낼 수 있다.

$$
\begin{equation*}
p(x, y)=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} P_{m n} \sin \frac{m \pi x}{a} \sin \frac{n \pi y}{b} \tag{9}
\end{equation*}
$$

식 (8)과 (9)를 식 (1)에 대입하고 정리하면 판의 중앙에 집중하중이 작용한 경우에 대한 식 (10)과 같 은 처짐식을 구할 수 있으며, 이 식으로부터 이론적인 하중-처짐관계를 구할 수 있다.

$$
\begin{array}{r}
\mathrm{w}(\mathrm{x}, \mathrm{y})=\frac{4 \mathrm{P}}{\pi^{4} \mathrm{abD}} \sum_{\mathrm{m}=1}^{\infty} \sum_{\mathrm{n}=1}^{\infty}(-1)^{\frac{m+n}{2}-1} \tag{10}\\
\cdot
\end{array}
$$

3. 합판의 실험

3.1. 합판제작

본 연구에서 사용한 실험용 합판은 (주)선창산업이 뉴질랜드로부터 수입한 Radiata Pine으로 만든 단판 을 사용하여 임업연구원에서 제작한 것이다. 제작방 법은 단판 $60 \times 60 \mathrm{~cm}$, 두께 1.2 mm 2 장. 2.0 mm 5 장 을 총 7 겹으로 두께 12.0 mm 가 되도록 제작하였다. 적층각은 각 단판을 $\left(0^{\circ} / 90^{\circ} / 0^{\circ} / 90^{\circ} / 0^{\circ} / 90^{\circ} / 0^{\circ}\right]$ 로 배열 하여 가운데 층에 대해서 적층각이 대칭이 되도록 하 였으며, 두께 1.2 mm 2 장은 표판으로 사용하였다. 접 착제는 페놀계 접착제를 사용하였고, 접착제 도포량 을 $333 \mathrm{~g} / \mathrm{m}^{2}$ 로 하고 1 면 도포하여 열압하였다. 열압 조건은 온도 $130^{\circ} \mathrm{C}$, 냉압시 게이지 압은 $10 \sim 20$ $\mathrm{kg} / \mathrm{cm}^{2}$, 열압시 게이지 압은 $10 \sim 15 \mathrm{~kg} / \mathrm{cm}^{2}$ 열압시 간은 9 min 으로 하였다.
이와 같은 제작방법으로 총 10 개의 합판 휨실험 시 편을 만들었다.

3.2. 실험장비

실험에 사용된 장비는 UTM (100 톤 용량)과 Load Cell, LVDT형 Uniaxial Extensometer ($\pm 5 \mathrm{~mm}$ 용량), 컴퓨터로 조작되는 Data Acquisition System이다.

3.3. 합판의 품질검증

합판의 품질검사를 위하여 KS F 3113 "구조용 합판

Table 1. Bending strength and elastic modulus of bending

Item	Bending Strength ($\mathrm{kg} / \mathrm{cm}^{2}$)		Elastic Modulu of Bending $\left(10^{3} \mathrm{~kg} / \mathrm{cm}^{2}\right)$	
	0°	90°	0°	90°
(1) Average (Test result)	536.64	500.88	57.52	51.22
$\text { KS } \stackrel{(2)}{F} 3113$	260.50	199.00	56.50	36.00
$\begin{gathered} \frac{(3)}{(2)} \\ \frac{(2)}{2} \\ \hline 100(\%) \end{gathered}$	106.0	1517	1.8	423

의 휨시험"에 따라 휨시험을 실시하였다. Table 1 은 시편 수를 0° 와 90° 에 대해 각각 8 개씩 채취하여 실험 한 결과를 나타낸 것으로 KS 규정보다 횜강도는 0° 일 때 $106 \%, 90^{\circ}$ 일 때는 151.7% 더 크게 나타났다. 횜탄 성 계수는 0° 일 때는 거의 같은 값이었으며 90° 일 매는 42.3% 더 큰 값이었다. 이때 시험시편의 함수율은 평 균 9.6% 였다. 따라서 실험에 사용한 합판은 품질규정 에 합격한 것임을 확인할 수 있었다.

3.4. 목재의 탄성계수 측정

본 연구에서 이론식에 적용할 Radiata Pine의 역학 적 성질로써 목재의 섬유방향의 탄성계수 $\left(\mathrm{E}_{11}\right)$. 접선 방향의 탄성계수 $\left(\mathrm{E}_{22}\right)$, 전단탄성계수 $\left(\mathrm{G}_{12}\right)$, 섬유방향 에서의 포아슨비 $\left(v_{12}\right)$ 가 필요하다. 먼저 E_{11} 이 먼저 결정되면 다른 탄성계수들은 목재의 일반적인 탄성계 수비 $\left(\mathrm{E}_{11}: \mathrm{E}_{22} \approx 20: 1, \mathrm{G}_{13}: \mathrm{G}_{12} \approx 10: 9.4, \mathrm{E}_{11}: \mathrm{G}_{13} \approx 14: 1\right)$ 에 의해 구할 수 있다 ${ }^{11}$. 또한, 포아슨비는 일반적으로 목재공학에서 적용하는 0.42 를 적용하였다 ${ }^{11}$. 따라서, E_{11} 만을 측정하기 위해 다음과 같은 방법으로 실험을 하였다.

3.4.1. 탄성계수 측정방법

인장탄성계수를 측정하기 위하여 합판제작에 사용 된 2.0 mm 단판을 길이방향이 섬유방향과 평행하도 록 하여 Fig. 3 과 같은 크기로 시편을 5 개 준비하였 다. 준비된 시편을 Fig. 4와 같이 UTM에 설치하고 시

Fig. 3. Tensile specimen.

Fig. 4. Tensile test set-up.

Fig. 5. Compression test.

편의 중앙에는 인장용 Uniaxial Extensometer를 설 치한 후 하중은 변위제어방식으로 $3 \mathrm{~mm} / \mathrm{min}$ 의 속도 로 가하였다.

섬유방향의 압축탄성계수를 측정하기 위하여 KS F 2206 "목재의 압축시험방법"에 의하여 Fig. 5와 같이

Table 2. Average value of elastic modulus

Item	Elastic modulus $\left(\mathrm{kg} / \mathrm{cm}^{2}\right)$	Moisture content $(\%)$
Tension	100,300	103
Compression	103,900	10.8

Fig. 6. Load-elongation curve (tension).
시편에 압축용 Uniaxial Extensometer를 설치하고 위와 같은 방법으로 $3 \mathrm{~mm} / \mathrm{min}$ 의 재하속도로 시험하 였다. 압축시험용 시편은 섬유방향과 수직인 단면이 정사각형인 직육면체로 하고 그 치수는 변의 길이롤 5 cm , 높이를 20 cm 로 하여 4 개의 시편을 제작하였 다.

3.4.2. 탄성계수 측정결과

인장과 압축시험을 수행하고 그 결과를 그래프로 나타냈으며, 대표적인 하중-변위 곡선은 Figs. 6, 7 과 같다. 탄성계수는 웅력-변형률 곡선의 기울기로서 하 중-변위 곡선으로부터 응력-변형률 곡선을 계산하여 구한 후 그래프의 기울기. 즉, 탄성계수를 계산하였 다. 시험결과 인장탄성계수는 $0.94 \sim 1.11 \times 10^{5} \mathrm{~kg} /$ cm^{2} 이었으며. 압축탄성계수는 $0.93 \sim 1.22 \times 10^{5} \mathrm{~kg} /$

Fig. 7. Load-shortening curve (compression).
cm^{2} 이었다. 각 탄성계수의 평균값은 Table 2에 나타 낸 바와 같다.
시험결과로부터 섬유방향의 탄성계수 $\left(\mathrm{E}_{11}\right)$ 를 $1 \times$ $10^{5} \mathrm{~kg} / \mathrm{cm}^{2}$ 로 결정하였으며. 목재의 일반적인 탄성계 수비에 의해 E_{22} 는 $5 \times 10^{3} \mathrm{~kg} / \mathrm{cm}^{2}$ 로. G_{12} 는 $6714 \mathrm{~kg} /$ cm^{2} 로 각각 결정하였다 ${ }^{1)}$.

3.5. 합판의 횜실험

횝실험에서 합판을 지지하기 위해 Fig. 8과 같은 받 침대를 제작하였다.
합판과 받침대가 맞닿는 부분에는 $50 \times 50 \mathrm{~cm}$ 의 철 재 앵글을 설치하였고, 받침대의 내부 중앙에는 LVDT 를 설치하여 처짐을 측정하도록 하였다.

Fig. 9는 실험용 합판을 설치한 것으로 판의 중앙에 는 집중하중을 가하기 위해 $2 \times 2 \times 2 \mathrm{~cm}$ 크기의 하중 점을 설치하였다.
하중은 Fig. 10에서 보여주고 있는 바와 같이 재하 하였으며, 변위제어방식을 사용하여 $3 \mathrm{~mm} / \mathrm{min}$ 의 속 도로 하중을 가하였다. 본 실험은 합판에서 미소처짐 이 발생한 경우 하중-변위관계를 알아보기 위한 것이 므로 판의 중앙점의 처짐이 5 mm 에 도달하면 실험을 중단하였다.

Fig. 8. Support and extensometer.

Fig. 9. Plywood and loading point.

Fig. 10. Flexural test.

4. 유한요소법에 의한 휨거동 해석

적층판이론 및 실험에 추가적으로 유한요소해석을

Fig. 11. GTSTRUDL SBHQ6 element (d.o.f at node 2 only).

Fig. 12. Finite element model of plywood plate.

수행하여 이론적 해석 및 실험결과의 타당성을 검토 하였다. 유한요소해석에는 범용구조해석 프로그램 중 의 하나인 GTSTRUDL(2002) ${ }^{4}$ 을 사용하여 판의 중 앙에 집중하중 P 가 작용하는 경우 판의 휨해석을 수 행하였다.
판의 모델링에 사용된 요소는 SBHQ6 (Stretching and Bending Hybrid Quadrilateral, 6 d.o.f per node)요소이다. 이 요소는 평면웅력요소와 판의 휨요 소의 조합으로 구성되어 있다. 따라서, 이 요소는 면 내력의 영향을 고려한 판의 거동해석에 사용되어지며 각 절점당 6 개의 자유도를 가지고 있다. SBHQ 6 요소 의 절점수와 절점 2 에서의 자유도는 Fig. 11에서 보 여주고 있는 바와 같다.
이 요소를 사용하여 넓이 $50 \times 50 \mathrm{~cm}$, 두께 12 mm 인 정사각형 판을 Fig. 12 와 같이 모델링하였고, Fig. 13 은 유한요소해석결과 하중이 재하된 판의 처짐형

적흥판이론을 적용한 Radiata Pine 콘크리트 거푸집용 합판의 횜해석

Fig. 13. Deformed shape of plywood plate.

Fig. 14. Comparison of FEM and theoretical results.

상을 보여주고 있다.
Fig. 14 는 휨해석 식에 의한 결과와 유한요소법에 의한 결과를 비교하여 나타낸 것이다. 그림에서 알 수 있듯이 횜해석 식에 의한 결과와 유한요소법에 의한 결과가 일치함을 알 수 있었다.

5. 실험결과 및 분석

Figs. 15 와 16 은 합판의 횜실험 결과와 이론식으로 부터 구한 하중-처짐 관계를 그래프로 나타낸 것이 다.
Figs. 15 와 16 으로부터 처짐이 판의 두께의 약 $1 / 4$ $(3 \mathrm{~mm})$ 이하에서는 실험값과 이론값이 거의 일치합

Fig. 15. Load-deflection curve (specimen No. 4).

Fig. 16. Load-deflection curve (specimen No. 5).

을 알 수 있었다. 또한, 하중이 증가함에 따라 처짐은 이론값이 실험값보다 더 크게 나타남을 알 수 있다. 이와 같은 결과는 콘크리트 거푸집을 설계할 때 적층 판이론을 적용하면 보다 안전측의 설계가 된다는 것 을 알 수 있다.

적층판이론에 의하면 두께가 아주 얆은 직교이방성 판을 다양한 각도로, 그리고 여러겹으로 적층하면, 이 재료는 등방성재료의 역학적 거동에 가까운 거동을 한다고 알려져 있다 ${ }^{77}$.

Fig. 17. Comparison of load-deflection curves.

본 연구에서 사용된 합퐌은 두께가 얇은 직교이방 성 단판을 여러장 서로 직교되게 적층하여 만든 재료 이므로 합판을 등방성재료로 간주하여 해석할 수도 있을 것이다. 그렇게 되면 판의 횜거동 해석이 훨씬 간편하게 되겠지만 등방성재료로서의 적절한 역학적 성질, 즉 둥방성재료의 탄성계수를 결정해야 한다. 합 판을 등방성재료로 가정했을 경우의 적절한 탄성계수 를 구하기 위해 탄성계수를 각각 $\mathrm{E}_{11}, \mathrm{E}_{22}, \mathrm{E}_{11}$ 과 E_{22} 의 산술평균, 그리고 E_{11} 과 E_{22} 의 기하평균값으로 가 정하고 이상의 4 가지 경우에 대해 각각 하중-처짐관 계를 이론식으로부터 구하였다.
Fig. 17은 그 결과를 각각 비교하여 그래프로 나타 낸 것이다. 합판을 등방성재료로 가정했을 경우 E_{11} 과 E_{22} 의 기하평균값을 탄성계수로 사용하는 것이 실험 값과 가장 근접한 결과를 얻을 수 있음을 알 수 있었 으며, 또한, 적층판이론을 적용한 이론적 계산결과와 도 거의 일치하는 결과를 얻을 수 있었다.

6. 결 론

본 연구에서는 콘크리트 거푸집용 합판을 직교이방 성 판으로 구성된 적층판으로 간주하고 적층판이론을

적융 판의 횜거동을 해석하였다. 또한, 합판의 제작에 사용된 Radiata Pine의 역학적 성질 $\left(\mathrm{E}_{11}\right)$ 을 측정하였 고, 제작된 합판의 횜실험을 하였다.

측정한 재료의 역학적 성질을 사용하여 추정한 이 론값과 실제 제작하여 실험한 합판의 실험값을 비교 한 결과 처짐이 판의 두께의 약 $1 / 4$ 이하에서는 잘 일 치함을 보였으나, 그 이상에서는 실험으로부터 구한 처짐이 더 작게 나타났다. 따라서, 적층판이론을 적용 하여 추정된 결과를 사용하면 안전측 설계를 할 수 있 음을 알 수 있었다.

본 연구의 목적중의 하나는 직교이방성 재료인 목 재를 적층하여 제작한 합판을 둥가인 둥방성판으로 해석하기 위한 역학적 성질(탄성상수)을 결정하기 위 한 것이었는데, 이를 위해 실험에 사용된 목재(직교 이방성)의 역학적 성질을 사용하여 여러 가지 방법으 로 등방성퐌의 해석에 사용되는 역학적 성질을 결정 하였으며, 이 중에서 섬유방향의 탄성계수와 접선방 향의 탄성계수의 기하평균값을 둥방성판의 탄성계수 로 사용하는 것이 실험으로부터 구한 처짐값에 더 근 접하게 추정할 수 있음을 알 수 있었다.

감사의 글

합판제작용 재료를 공급해주신 (주)선창산업, 합판 을 제작하고 연구에 자문을 해주신 임업연구원 서진 석. 심국보 박사님, 그리고 국민대학교 차재경 교수님 께 감사드립니다.

참 고 문 헌

1. J. Bodig and B. A. Jayne. 1982 Mechanics of Wood and Wood Composites. Van Nostrand Reinhold Company Inc., New York.
2. R. Szilard. 1974. Theory and Analysis of Plates. Prentice-Hall, New Jersey.
3. S. P. Timoshenko and S. Woinowsky-Krieger. 1959. Theory of Plates and Shells. McGraw-Hill International Inc, New York.
4. GTSTRUDL 2002 GTSTRUDL User's Manual, Latest

Revision, K, May, GTICS Systems Laboratory. Georgia Institute of Technology, Atlanta.
5. R. M. Jones. 1975. Mechanics of Composite Materials. Scripta Book Company, Washington, D. C.
6. J. R. Vinson and R. L. Sierakowski. 1987. The Behavior of Structures Composed of Composite Materials. Martinus Nifhoff Publishers, Dordrecht.
7. J. M Whitney. 1987. Structural Analysis of Laminated Anisotropic Plates. Technomic Publishing Company

Inc, Lancaster.
8. R. I. Peurifoy and G. D. Oberlender. 1995. Formwork for Concrete Structures. McGraw-Hill International Inc., New York.
9. KS F 3113. 1999. 구조용합판, 한국표준협회.
10. KS F 2206. 1994. 목재의 압축시험 방법, 한국표준협회.
11. 김성남. 1995. 거푸집이란?, 콘크리트학회지 Vol. 7(4), pp. $7 \sim 16$.

[^0]: * 1 접수 2004 년 1 월 27 일, 채택 2004년 4월 5 일
 * ${ }^{2}$ 홍익대학교 토목공학과 구조실험실, Structures Lab., Civil Engineering. Hongik University. Seoul, Korea
 \dagger 주저자(corresponding author) : 남정훈(e-mail: cheethar@hanmail.net)

