• Title/Summary/Keyword: applied element method

Search Result 3,675, Processing Time 0.028 seconds

Equivalent Suspension Bridge Model for Tower Design of Multi-span Suspension Bridges (다경간 현수교 주탑 설계를 위한 등가 현수교 모델)

  • Choi, Dong-Ho;Na, Ho-Sung;Yi, Ji-Yop;Gwon, Sun-Gil
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.6
    • /
    • pp.669-677
    • /
    • 2011
  • The multi-span suspension bridge generally has more than three towers and two main spans. To economically and effectively design a multi-span suspension bridge, the proper stiffness ratio of the center tower to the side tower must be determined. This study was conducted to propose a method of figuring out briefly the structural behavior of the towers in a multi-span suspension bridge. In the equivalent suspension bridge model, the main cable of the multi-span suspension bridge is idealized as an equivalent cable spring, and the external loads of horizontal and vertical forces that were calculated using the tensile forces of the main cable were applied on top of the towers. The equilibrium equations of the equivalent multi-span suspension bridge model were derived and the equations were solved via nonlinear analysis. To verify the proposed method, a sample four-span suspension bridge with a main span length of 3,000 m was analyzed using thefinite element method. The displacements and moment reactions of each tower in the proposed method were compared with the FEM analysis results. Consequently, the results of the analysis of the equivalent suspension bridge model tended to be consistent with the results of the FEM analysis.

A Study on the Dynamic Strength Analysis of the Hull Girder Among Waves Considering Non-Linear Hydrodynamic forces (선박의 비선형 유체력을 고려한 파랑중 동적 강도 해석법에 관한 연구)

  • Ku-Kyun Shin;Sa-Soo Kim;Sung-Wan Son
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.29 no.4
    • /
    • pp.152-172
    • /
    • 1992
  • The ship sailing among waves are suffered the various wave loads that comes from its motion throughout its life. Because there are dynamic, the analysis of ship structure must be considered as the dynamic problem precisely. In the rationally-based design, the dynamic structural analysis is carried out using dynamic wave loads provided from the results of the ship mouton calculation as the rigid body. This method is based on the linear theory assumed low wave height and small amplitude of motion. But at the rough sea condition, high wave height, relatively ship's depth, is induced the large ship motion, so the ship section configulation below water line is rapidly changed at each time. This results in non-linear problem. Considering above situation in this paper, the strength analysis method is introduced for the hull glider among waves considering non-linear hydrodynamic forces. This paper considers that the overall or primary level of the ship structural dynamic loading and dynamic response provided from the non-linear wave forces, and bottom and bow flare impact forces estimated by momentum slamming theory, in which the ship is idealized as a hollow thin-walled box beam using thin-walled beam theory and the finite element method. This method is applied to 40,000 Ton Double-Skin Tanker and attention is paid to the influence of the response of ship speed, wave length and wave height compared with linear strip theory.

  • PDF

Production of Realistic Explosion Effects through Four Types of Solutions (4가지 솔루션을 통한 사실적인 폭발효과 제작)

  • Kim, Dong Sik;Hwang, Min Sik;Lee, Hyun Seok;Kim, Yong Hee;Yun, Tae Soo
    • Smart Media Journal
    • /
    • v.4 no.4
    • /
    • pp.120-129
    • /
    • 2015
  • Explosion effect on CG (Computer Graphic) a visual effect on which a higher degree of technological difficulty is required with a variety of effect elements such as Fire, Smoke, Flame, Dust, Debris, etc. integrated on it. As skills for CG software have been advanced, solutions loaded with functions of various fluid simulation have been developed. So more realistic special effects came to be available. However, in Korea, it depends just on CG program functions. Besides, enough R&D's concerned have not been followed up. Accordingly, this study is aimed at offering a production method that may effectively implement more realistic explosion effects under experimentations. To begin with, the study derives problems through a precedent study of the implementation of existing explosion effects. Then to solve them, experimental studies are performed depending on four solutions. There are accesses to the four solutions: first, Numerous Turbulent Flow, a method to allow an attribute of turbulent air in the stage of fluid simulation; second, Cache Retiming Solution produced in script; third, Multiple Volume Container based on cached data; and fourth, RGB Lighting Pipeline, a method to enhance the completion of the result from the stage of composition. Characteristics of effects applied in each stage and consecutive connections of them proved the effective implementation of more realistic explosion effects. This study may not only suppose the production method for efficient explosion effects differentiated from the previous ones but also be utilized as basic data for relevant researches.

Quantitative Cyber Security Scoring System Based on Risk Assessment Model (위험 평가 모델 기반의 정량적 사이버 보안 평가 체계)

  • Kim, Inkyung;Park, Namje
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.5
    • /
    • pp.1179-1189
    • /
    • 2019
  • Cyber security evaluation is a series of processes that estimate the level of risk of assets and systems through asset analysis, threat analysis and vulnerability analysis and apply appropriate security measures. In order to prepare for increasing cyber attacks, systematic cyber security evaluation is required. Various indicators for measuring cyber security level such as CWSS and CVSS have been developed, but the quantitative method to apply appropriate security measures according to the risk priority through the standardized security evaluation result is insufficient. It is needed that an Scoring system taking into consideration the characteristics of the target assets, the applied environment, and the impact on the assets. In this paper, we propose a quantitative risk assessment model based on the analysis of existing cyber security scoring system and a method for quantification of assessment factors to apply to the established model. The level of qualitative attribute elements required for cyber security evaluation is expressed as a value through security requirement weight by AHP, threat influence, and vulnerability element applying probability. It is expected that the standardized cyber security evaluation system will be established by supplementing the limitations of the quantitative method of applying the statistical data through the proposed method.

Seismic Reliability Analysis of Offshore Wind Turbine with Twisted Tripod Support using Subset Simulation Method (부분집합 시뮬레이션 방법을 이용한 꼬인 삼각대 지지구조를 갖는 해상풍력발전기의 지진 신뢰성 해석)

  • Park, Kwang-Yeun;Park, Wonsuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.2
    • /
    • pp.125-132
    • /
    • 2019
  • This paper presents a seismic reliability analysis method for an offshore wind turbine with a twisted tripod support structure under earthquake loading. A three dimensional dynamic finite element model is proposed to consider the nonlinearity of the ground-pile interactions and the geometrical characteristics of the twisted tripod support structure where out-of-plane displacement occurs even under in-plane lateral loadings. For the evaluation of seismic reliability, the failure probability was calculated for the maximum horizontal displacement of the pile head, which is calculated from time history analysis using artificial earthquakes for the design return periods. The application of the subset simulation method using the Markov Chain Monte Carlo(MCMC) sampling is proposed for efficient reliability analysis considering the limit state equation evaluation by the nonlinear time history analysis. The proposed method can be applied to the reliability evaluation and design criteria development of the offshore wind turbine with twisted tripod support structure in which two dimensional models and static analysis can not produce accurate results.

A Study on the Application of UBC3D-PLM for Soil Liquefaction Analysis (액상화 해석을 위한 UBC3D-PLM의 적용성에 관한 연구)

  • Park, Eon-Sang;Kim, Byung-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • In this study, a model parameter evaluation method using relative density was proposed to utilize applicable UBC3D-PLM for liquefaction behavior. In addition, dynamic effective stress analysis, that is, liquefaction analysis, was performed on the case of the liquefaction occurrence region where acceleration and pore water pressure were measured, and compared with the actual measurement and the existing Finn analysis results. Through this study, it was found that the proposed method can easily evaluate the necessary parameters required by the related model and predict the pore water pressure behavior in the region where liquefaction occurs. In addition, in the case of the study area, both measurements and numerical analysis showed that liquefaction occurred when a certain amount of time elapsed after the earthquake acceleration reached the maximum value. In the case of UBC3D-PLM applied in this study, the excess pore water pressure behavior similar to the actual measurement was predicted, and the occurrence of liquefaction was evaluated in the same way as the actual measurement. In particular, although the excess pore water pressure in the sand layer was greater, the phenomenon in which liquefaction occurred in the silt layer was accurately realized. It is expected that the proposed model parameter evaluation method and finite element analysis applying UBC3D-PLM can be used to select the liquefaction reinforcement region in the future seismic design and reinforcement by evaluating the liquefaction occurrence region similarly to the real one.

FINITE ELEMENT ANALYSIS OF MANDIBULAR STRESSES INDUCED BY OVERDENTURE WITH DIFFERENT DESIGNS OF ABUTMENT COPINGS (지대치 coping형태에 따른 overdenture하에서 하악 응력에 관한 유한요소법적 분석)

  • Park Hae-Kyoon;Chung Chae-Heon;Cho Kyu-Zong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.3
    • /
    • pp.141-170
    • /
    • 1991
  • This study was to analyze the displacement and the magnitude and mode of distribution of the stresses in the lower overdenture, the mucous membrane, the abutment teeth and the mandibular supporting bone when various abutment designs were subjected to different loading schemes. For this study, the two-dimensional finite element method was used. The models of overdenture and mandibe with the canine and the second premolar remaining, were fabricated. In the first design, a 1 mm space was prepared between the denture and the dome abutment with the height of 2 mm(OS). In the second design, a contact between the denture and the occlusal third of the dome abutment with the hight of 2 mm was prepared(OC). In the third design, a 0.5 mm space was prepared between the denture and 8 degree tapered cylindrical abutments with the height of 7 mm(TS). In the fourth design, a contact between the denture and the occlusal two thirds of the conical abutments with the height of 7 mm was prepared(TC). In order to represent the same physiological condition as the fixed areas of the mandible under loading schemes, the eight nodes which lie at the mandibular angle, the coronoid process and the mandibular condyle were assumed to be fixed. Each model was loaded with a magnitude of 10 Kgs on the first molar region (P1) and 7 Kgs on the central incisor region (P2) in a vertical direction. The force of 10 Kgs was then applied distributively from the first premolar to the second molar of each motel in a vertical direction (P3). The results were as follows: 1. The vertical load on the central incisor region(P2) produced the higher displacement and stress concentration than that on the posterior region(P1, P3). 2. The case of space between abutment and denture base produced higher displacement than that of contact, and the case of long abutment produced higher displacement than that of short abutment because of low rigidity of denture base. 3. The magnitude of the torque and vertical force to the abutment teeth and the stress distribution to the denture base was higher in the telescope coping than in the overdenture coping. 4. The vertical load on the central incisor region(P2) produced higher equivalent stress in the mandible than that on the posterior region(P1, P3). 5. The case of space between abutment and denture base produced better stress distribution to the farther abutment from the loading point than that of contact. 6. In case of sound abutment teeth, the type of telescope coping can be used, hilt in case of weak abutment, the type of overdenture coping is considered to be favorable generally.

  • PDF

Characteristics Investigation and Design of the Mandrel for Fiber Optic Acoustic Sensor (광섬유 음향 센서용 맨드릴 설계 및 특성 연구)

  • Lee, Jongkil;Ha, Tae-Hyun;Lee, June-Ho
    • 대한공업교육학회지
    • /
    • v.34 no.2
    • /
    • pp.331-345
    • /
    • 2009
  • In this research Sagnac interferometer three different types of mandrel are suggested and this fiber optic sensor is using in monitoring of electric transformer. Vibration characteristics of those mandrels were analyzed and finally more sensitivity mandrel are suggested. Three different mandrels using in fiber optic sensor are hollow cylinder with outer bump, pure hollow cylinder, hollow cylinder with inner bump. Natural frequencies and mode shapes are investigated using finite element method. Mode shape are considered at the frequency range from 2 kHz to 20 kHz. Fundamental dimensions of the hollow cylinder type's mandrel are 30 mm in outer diameter, 50 mm in length, 1 mm in cylinder thickness, $2mm{\times}2mm$ in bump size. Based on the finite element results, when the outer acoustic frequency is near 11 kHz outer bump type and hollow cylinder can get higher sensitivity. Near 17 kHz outer bump and inner bump mandrel can get higher sensitivity. Near 20 kHz hollow cylinder and inner bump mandrel is useful. This results can be applied to design of fiber optic sensor using in monitoring the electrical transformer. Several MHz of outer acoustic frequency can be easily detected using more sensitive mandrel in pursuing expand this technique.

A Study on the Torque Characteristics Depending on the Elastic Body Materials of a Hexadecagon Shaped Ultrasonic Motor (탄성체 재질 변화에 따른 16각형 초음파모터의 토크 특성 연구)

  • Cheon, Seong-Kyu;Jeong, Seong-Su;Lee, Byung-Ha;Ha, Yong-Woo;Kim, Myong-Ho;Park, Tae-Gone
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.5
    • /
    • pp.286-291
    • /
    • 2014
  • In this study, novel ultrasonic rotary motor of hexadecagon shape stator was proposed. Stator of the hexadecagon ultrasonic motor was composed of an elastic ring and ceramics. The elastic ring had sixteen sides and sixteen angular points. Eight ceramics were attached on the outer surface of the eight sides of the ring. When rotor of cylindrical shaft was inserted inside of the ring stator, central lines of the sixteen sides of the stator hold the shaft by the slight pressures(frictions). This slight pressure was a preload of the motor and it could be controlled by radius and thickness of the ring. When two sinusoidal voltages which have 90 degree phase difference were applied to each four ceramics, elliptical displacements of inner surface of the ring were obtained. These elliptical displacements of the inner surface rotated the shaft rotor through the frictions. The proposed hexadecagon ultrasonic motor was designed and analyzed by using the finite element method (FEM), depending on materials of the elastic ring. Based on the FEM results, one model of motor which showed maximum displacement at contact points was chosen and fabricated. And characteristics of the motor were compared with simulated results. When the motor was fabricated with these results, EL20ET0.5CT0.5CW2 model showed 115[rpm] speed about input voltage of 60[Vrms] at 65.6[kHz]. And the maximum torque of 6[gfcm] was obtained. From these results, the hexadecagon shaped ultrasonic motor can be used to actuator for optical device which needs detailed position control. Also it can be used to medical and portable device by reducing size and weight.

Analysis on Femoral Neck Fractures Using Morphological Variations (파라메트릭 형상모델을 이용한 근위 대퇴골의 경부 골절 영향 해석)

  • Lee, Ho-Sang;Park, Byoung-Keon;Chae, Je-Wook;Kim, Jay-Jung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.5
    • /
    • pp.459-465
    • /
    • 2011
  • It has been reported that the femoral morphology has a major correlation to femoral neck fractures(FNF). Previous studies to analyze these correlations have relied on mechanical testing and finite element methods. However, these methods have not been widely applied to various femur samples and models. It is because of the availability of the samples from both patients and cadavers, and also of the geometric limitations in changing the shape of the models. In this study we analyzed femoral neck fractures using a parameterized femoral model that could provide flexibility in changing the geometry of the model for the wide applications of FNF analysis. With the parameterization a variety of models could be generated by changing four major dimensions: femoral head diameter(FHD), femoral neck diameter(FND), femoral neck length(FNL), and neck-shaft angle(NSA). We have performed FEA on the models to compute the stress distributions and reaction forces, and compare them with the data previously generated from mechanical testing. The analysis results indicate that the FND is significantly related with the FNF and the FHD is not significantly related with the FNF.