• Title/Summary/Keyword: apoptotic cytotoxicity

Search Result 342, Processing Time 0.02 seconds

Induction of apoptotic cell death in human bladder cancer cells by ethanol extract of Zanthoxylum schinifolium leaf, through ROS-dependent inactivation of the PI3K/Akt signaling pathway

  • Park, Cheol;Choi, Eun Ok;Hwangbo, Hyun;Lee, Hyesook;Jeong, Jin-Woo;Han, Min Ho;Moon, Sung-Kwon;Yun, Seok Joong;Kim, Wun-Jae;Kim, Gi-Young;Hwang, Hye-Jin;Choi, Yung Hyun
    • Nutrition Research and Practice
    • /
    • v.16 no.3
    • /
    • pp.330-343
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Zanthoxylum schinifolium is traditionally used as a spice for cooking in East Asian countries. This study was undertaken to evaluate the anti-proliferative potential of ethanol extracts of Z. schinifolium leaves (EEZS) against human bladder cancer T24 cells. MATERIALS/METHODS: Subsequent to measuring the cytotoxicity of EEZS, the anti-cancer activity was measured by assessing apoptosis induction, reactive oxygen species (ROS) generation, and mitochondrial membrane potential (MMP). In addition, we determined the underlying mechanism of EEZS-induced apoptosis through various assays, including Western blot analysis. RESULTS: EEZS treatment concentration-dependently inhibited T24 cell survival, which is associated with apoptosis induction. Exposure to EEZS induced the expression of Fas and Fas-ligand, activated caspases, and subsequently resulted to cleavage of poly (ADP-ribose) polymerase. EEZS also enhanced the expression of cytochrome c in the cytoplasm by suppressing MMP, following increase in the ratio of Bax:Bcl-2 expression and truncation of Bid. However, EEZS-mediated growth inhibition and apoptosis were significantly diminished by a pan-caspase inhibitor. Moreover, EEZS inhibited activation of the phosphoinositide 3-kinase (PI3K)/Akt pathway, and the apoptosis-inducing potential of EEZS was promoted in the presence of PI3K/Akt inhibitor. In addition, EEZS enhanced the production of ROS, whereas N-acetyl cysteine (NAC), a ROS scavenger, markedly suppressed growth inhibition and inactivation of the PI3K/Akt signaling pathway induced by EEZS. Furthermore, NAC significantly attenuated the EEZS-induced apoptosis and reduction of cell viability. CONCLUSIONS: Taken together, our results indicate that exposure to EEZS exhibits anti-cancer activity in T24 bladder cancer cells through ROS-dependent induction of apoptosis and inactivation of the PI3K/Akt signaling pathway.

Tumor-suppressor Protein p53 Sensitizes Human Colorectal Carcinoma HCT116 Cells to 17α-estradiol-induced Apoptosis via Augmentation of Bak/Bax Activation (17α-Estradiol에 의한 인체 대장암 세포주 HCT116의 에폽토시스에 수반되는 Bak/Bax의 활성화에 미치는 종양억제단백질 p53의 강화효과)

  • Han, Cho Rong;Lee, Ji Young;Kim, Dongki;Kim, Hyo Young;Kim, Se Jin;Jang, Seokjoon;Kim, Yoon Hee;Jun, Do Youn;Kim, Young Ho
    • Journal of Life Science
    • /
    • v.23 no.10
    • /
    • pp.1230-1238
    • /
    • 2013
  • The regulatory effect of the tumor-suppressor protein p53 on the apoptogenic activity of $17{\alpha}$-estradiol ($17{\alpha}-E_2$) was compared between HCT116 ($p53^{+/+}$) and HCT116 ($p53^{-/-}$) cells. When the HCT116 ($p53^{+/+}$) and HCT116 ($p53^{-/-}$) cells were treated with $2.5{\sim}10{\mu}M$ $17{\alpha}-E_2$ for 48 h or with $10{\mu}M$for various time periods, cytotoxicity and an apoptotic sub-$G_1$ peak were induced in the HCT116 ($p53^{+/+}$) cells in a dose- and time-dependent manner. However, the HCT116 ($p53^{-/-}$) cells were much less sensitive to the apoptotic effect of $17{\alpha}-E_2$. Although $17{\alpha}-E_2$ induced aberrant mitotic spindle organization and incomplete chromosome congregation at the equatorial plate, $G_2/M$ arrest was induced to a similar extent in both cell types. In addition, $17{\alpha}-E_2$-induced activation of Bak and Bax, ${\Delta}{\Psi}m$ loss, and PARP degradation were more dominant in the HCT116 ($p53^{+/+}$) than in the HCT116 ($p53^{-/-}$) cells. In accordance with enhancement of p53 phosphorylation (Ser-15) and p53 levels, p21 and Bax levels were elevated in the HCT116 ($p53^{+/+}$) cells treated with $17{\alpha}-E_2$. The HCT116 ($p53^{-/-}$) cells exhibited barely or undetectable levels of p21 and Bax, regardless of $17{\alpha}-E_2$ treatment. On the other hand, although the level of Bcl-2 was slightly lower in the HCT116 ($p53^{+/+}$) than in the HCT116 ($p53^{-/-}$) cells, it remained relatively constant after the $17{\alpha}-E_2$ treatment. Together, these results show that among the components of the $17{\alpha}-E_2$-induced apoptotic-signaling pathway, which proceeds through mitotic spindle defects causing mitotic arrest, subsequent activation of Bak and Bax and the mitochondria-dependent caspase cascade, leading to PARP degradation, $17{\alpha}-E_2$-induced activation of Bak and Bax is the upstream target of proapoptotic action of p53.

Phosphodiesterase III Inhibitor Cilostazol Protects Amyloid β-Induced Neuronal Cell Injury via Peroxisome Proliferator-Activated Receptor-γ Activation (Amyloid β에 의해 유도된 신경세포 손상에 대한 phosphodiesterase III inhibitor인 cilostazol의 신경보호 효과)

  • Park, Sun-Haeng;Kim, Ji-Hyun;Bae, Sun-Sik;Hong, Ki-Whan;Choi, Byung-Tae;Shin, Hwa-Kyoung
    • Journal of Life Science
    • /
    • v.21 no.5
    • /
    • pp.647-655
    • /
    • 2011
  • The neurotoxicity of aggregated amyloid ${\beta}$ ($A{\beta}$) has been implicated as a critical cause in the pathogenesis of Alzheimer's disease (AD). It can cause neurotoxicity in AD by evoking a cascade of apoptosis to neuron. Here, we investigated the neuroprotective effects of cilostazol, which acts as a phosphodiesterase III inhibitor, on $A{\beta}_{25-35}$-induced cytotoxicity in mouse neuronal cells and cognitive decline in the C57BL/6J AD mouse model via peroxisome proliferator-activated receptor (PPAR)-${\gamma}$ activation. $A{\beta}_{25-35}$ significantly reduced cell viability and increased the number of apoptotic-like cells. Cilostazol treatment recovered cells from $A{\beta}$-induced cell death as well as rosiglitazone, a PPAR-${\gamma}$ activator. These effects were suppressed by GW9662, an antagonist of PPAR-${\gamma}$ activity, indicative of a PPAR-${\gamma}$-mediated signaling. In addition, cilostazol and rosiglitazone also restored PPAR-${\gamma}$ activity levels that had been altered as a result of $A{\beta}_{25-35}$ treatment, which were antagonized by GW9662. Furthermore, cilostazol also markedly decreased the number of apoptotic-like cells and decreased the Bax/Bcl-2 ratio. Intracerebroventricular injection of $A{\beta}_{25-35}$ in C57BL/6J mice resulted in impaired cognitive function. Oral administration of cilostazol (20 mg/kg) for 2 weeks before $A{\beta}_{25-35}$ injection and once a day for 4 weeks post-surgery almost completely prevented the $A{\beta}_{25-35}$-induced cognitive deficits, as did rosiglitazone. Taken together, our findings suggest that cilostazol could attenuate $A{\beta}_{25-35}$-induced neuronal cell injury and apoptosis as well as promote the survival of neuronal cells, subsequently improving cognitive decline in AD, partly because of PPAR-${\gamma}$ activation. The phosphodiesterase III inhibitor cilostazol may be the basis of a novel strategy for the therapy of AD.

Repetition of Apoptosis Induced by Amiloride Derivatives in Human Umbilical Vein Endothelial Cells (제대정맥 내피세포에서 Amiloride 유도체에 의한 Apoptosis 반복)

  • Park, Kyu Chang;Park, Kyu Sang;Moon, Soo Jee
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.1
    • /
    • pp.56-66
    • /
    • 2003
  • Purpose : Human umbilical vein endothelial cells(HUVECs) play an important role in regulating blood flow by releasing vasoactive substances. It has been reported that endothelial impairment and dysfunction might be a primary cause of placental vascular disease, which is manifested clinically as preeclampsia in mother and intrauterine growth restriction in fetus. Furthermore, the frequency of apoptotic changes is increased in umbilical and placental tissues from growth-restricted pregnancies. However, the various mechanisms of umbilical endothelial cell apoptosis have not been broadly proposed. We investigate the effects of amiloride derivatives on apoptotic death of HUVECs and identify their ionic mechanism. Methods : HUVECs were purchased from Clonetics, and cultured on endothelial cell growth medium. MTT assay and flow cytometry were used for assessing cytotoxic effect and confirming the apoptosis. Changes in intracellular ion concentrations were measured with specific fluorescent dyes and fluorescence imaging analysis system. Results : Amiloride derivatives elicited cytotoxic effects on HUVECs with dose-dependent manners and the rank order of potency is HMA($IC_{50}\;11.2{\mu}M$), MIA>EIPA>>amiloride. HMA-induced cytotoxicity is dependent on extra- and intracellular pH, that is, increase extra- and intracellular pH augmented the cytotoxic effects of HMA. HMA dose-dependently reduced intracellular major ions, such as $K^+$ and $Cl^-$. Interestingly, the depletion of intracellular ions induced by HMA was also significantly enhanced at alkaline extracellular pH. Conclusion : Amiloride derivatives induce apoptosis of HUVECs with dose and pH dependent manners. They reduce intracellular $K^+$ and $Cl^-$ concentration, which is also extracellular pH dependent.

Isolation and Structure Identification of Photosensitizer from Perilla frutescens Leaves Which Induces Apoptosis in U937 (들깻잎(Perilla frutescens)으로부터 U937 세포에 apoptosis를 유도하는 광과민성 물질의 분리 및 구조동정)

  • Ha, Jun Young;Kim, Mi Kyeong;Lee, Jun Young;Choi, Eun Bi;Hong, Chang Oh;Lee, Byong Won;Bae, Chang Hwan;Kim, Keun Ki
    • Journal of Life Science
    • /
    • v.25 no.1
    • /
    • pp.53-61
    • /
    • 2015
  • In this study, we tried to separate the photosensitizer that induces apoptosis of leukemia cells (U937) from perilla leaves. Perilla leaves (Perilla frutescens Britt var. japonica Hara) are a popular vegetable in Korea, being rich in vitamins (A and E), GABA, and minerals. Dried perilla leaves were extracted with methanol to separate the photosensitizer by various chromatographic techniques. The structure of the isolated compound (PL9443) was identified by 1D-NMR, 2D-NMR, and FAB-mass spectroscopy. Absorbance of the UV-Vis spectrum was highest at 410 nm and was confirmed by the 330, 410, and 668 nm. PL9443 compound was determined to be pheophorbide, an ethyl ester having a molecular weight of 620. It was identified as a derivative compound of pheophorbide structure when magnesium comes away from a porphyrin ring. Observation of morphological changes in U937 cells following cell death induced by treated PL9443 compound revealed representative phenomena of apoptosis only in light irradiation conditions (apoptotic body, vesicle formation). Results from examining the cytotoxicity of PL9443 substance against U937 cells showed that inhibition rates of the cell growth were 99.9% with the concentration of 0.32 nM PL9443. Also, the caspase-3/7 activity was 99% against U937 cells with the concentration of 0.08 nM of PL9443 substance. The result of the electrophoresis was that a DNA ladder was formed by the PL9443. The PL9443 compound is a promising lead compound as a photosensitizer for photodynamic therapy of cancer.

4-Hydroxynonenal Induces Endothelial Cell Apoptosis via ROS and Peroxynitrite Generation (4-Hydroxynonenal에 생성된 ROS와 peroxynitrite를 통한 내피세포의 세포사에 관한 연구)

  • Chung, Sang-Woon;Yee, Su-Bog;Lee, Ji-Young;Hossain, Mohammad Akbar;Kim, Dong-Hwan;Yoon, Jeong-Hyun;Chung, Hae-Young;Kim, Nam-Deuk;Kim, Nam-Deuk
    • Journal of Life Science
    • /
    • v.21 no.7
    • /
    • pp.961-968
    • /
    • 2011
  • The formation of reactive lipid aldehydes, 4-hydroxynonenal (HNE) is shown to be derived from fatty acid hydroperoxides through the oxidative process. Among its known effects in cytotoxicity, HNE has been implicated in apoptotic cell death. To delineate its putative role as a potential mediator, we investigated the mechanism by which HNE induces apoptosis of endothelial cells (ECs). The anti-proliferative effects of HNE were tested through MTT assay after exposure to various concentrations ($5\sim15\;{\mu}M$) of HNE. We observed apoptotic bodies with propidium iodide staining, and measured the HNE induction of endothelial apoptosis by flow cytometry assay. We observed that cells exposed to HNE for 24 hr resulted in increased poly(ADP-ribose) polymerase cleavage and up-regulation of Bax. Data on the HNE action strongly indicated the involvement of reactive species, namely, intracellular ROS, nitrite, and peroxynitrite. To obtain evidence on the implication of ROS and peroxynitrite in HNE-induced apoptosis, a ROS scavenger, N-acetylcysteine (NAC), and a peroxynitrite scavenger, penicillamine, were tested. Results clearly indicate that the induction of apoptosis by HNE was effectively inhibited by NAC and penicillamine. Based on the present data, we conclude that the endothelial apoptosis induced by HNE involves both ROS generation and peroxynitrite activity. Our new data could lead to a redefinition of HNE action on apoptosis in ECs.

Chemical Composition and Antitumor Apoptogenic Activity of Methylene Chloride Extracts from the Leaves of Zanthoxylum schinifolium (Zanthoxylum schinifolium잎의 methylene chloride 추출물의 화학적 조성 및 암세포에 대한 세포자살 유도활성과 그 작용기전)

  • Kim Jun-Seok;Jun Do-Youn;Woo Mi-Hee;Rhee In-Koo;Kim Young-Ho
    • Journal of Life Science
    • /
    • v.16 no.3 s.76
    • /
    • pp.546-554
    • /
    • 2006
  • To understand antitumor activity of Zanthoxylum schinfolium, which has been used as an aromatic and medicinal plant in Korea, the cytotoxic effect of various organic solvent extracts of its leaves on human tumor cells were investigated. Among these extracts such as methanol extract (SL-13), methylene chloride extract (SL-14), ethyl acetate extract (SL-15), n-butanol extract (SL-16), and residual fraction (SL-17), SL-14 appeared to contain the most cytotoxic activity against leukemia and breast cancer cells tested. The methylene chloride extra.1 (SL-14) possessed an apoptogenic activity causing apoptotic DNA fragmentation of human acute leukemia Jurkat T cells via mitochondrial cytochrome c release into cytoplasm, subsequent activation of caspase-9 and caspase-3, and cleavage of PARP, which could be negatively regulated by antiapoptotic protein Bcl-xL. The GC-MS analysis of SL-14 revealed that the twenty-two ingredients of SL-14 were 9,19-cyclolanost-24-en-3-ol (15.1%), 2-a-methyl-17, b-hop-21-ene (15.1%), 15-methyl-2,3-dihydro-1H benzazepin (11.95%), phytol (10.38%), lupeol (9.92%), 12-methylbenzofuran (8.23%), hexadecanoic acid (5.96%), cis,cis,cis-9,12,15-octadecatrienoic acid-methyl-ester (5.49%), 9,12,15-octadecatrienoic acid-methylester (3.59%), 15-methyl-4-(1-methylethylidene)-2-(4-nitrophenyl) (3.36%), hexadecanoic acid methyl ester (1.93%), vitamine E (1.88%), beta-amyrin (0.96%), and auraptene (0.89%). These results demonstrate that the cytotoxicity of the methylene chloride extract of the leaves of Z. schinifolium toward Jurkat T cells is mainly attributable to apoptosis mediated by mitochondria-dependent caspase cascade regulated by Bcl-xL, and provide an insight into the mechanism underlying antitumor activity of the edible plant Z. schinifolium.

Neuroprotective effects of Momordica charantia extract against hydrogen peroxide-induced cytotoxicity in human neuroblastoma SK-N-MC cells (산화적 스트레스에 대한 여주 (Momordica charantia) 추출물의 항산화 효과 및 세포사멸 억제 기전을 통한 신경세포보호효과)

  • Kim, Kkot Byeol;Lee, Seonah;Heo, Jae Hyeok;Kim, Jung hee
    • Journal of Nutrition and Health
    • /
    • v.50 no.5
    • /
    • pp.415-425
    • /
    • 2017
  • Purpose: Many studies have suggested that neuronal cells protect against oxidative stress-induced apoptotic cell death by polyphenolic compounds. We investigated the neuroprotective effects and the mechanism of action of Momordica charantia ethanol extract (MCE) against $H_2O_2-induced$ cell death of human neuroblastoma SK-N-MC cells. Methods: The antioxidant activity of MCE was measured by the quantity of total phenolic acid compounds (TPC), quantity of total flavonoid compounds (TFC), and 2,2-Diphenyl-1-pycrylhydrazyl (DPPH) radical scavenging activity. Cytotoxicity and cell viability were determined by CCK-8 assay. The formation of reactive oxygen species (ROS) was measured using 2,7-dichlorofluorescein diacetate (DCF-DA) assay. Antioxidant enzyme (SOD-1,2 and GPx-1) expression was determined by real-time PCR. Mitogen-activated protein kinases (MAPK) pathway and apoptosis signal expression was measured by Western blotting. Results: The TPC and TFC quantities of MCE were 28.51 mg gallic acid equivalents/extract g and 3.95 mg catechin equivalents/extract g, respectively. The $IC_{50}$ value for DPPH radical scavenging activity was $506.95{\mu}g/ml$ for MCE. Pre-treatment with MCE showed protective effects against $H_2O_2-induced$ cell death and inhibited ROS generation by oxidative stress. SOD-1,2 and GPx-1 mRNA expression was recovered by pre-treatment with MCE compared with the presence of $H_2O_2$. Pre-treatment with MCE inhibited phosphorylation of p38 and the JNK pathway and down-regulated cleaved caspase-3 and cleaved PARP by $H_2O_2$. Conclusion: The neuroprotective effects of MCE in terms of recovery of antioxidant enzyme gene expression, down-regulation of MAPK pathways, and inhibition apoptosis is associated with reduced oxidative stress in SK-N-MC cells.

Extract from Eucheuma cottonii Induces Apoptotic Cell Death on Human Osteosarcoma Saos-2 Cells via Caspase Cascade Apoptosis Pathway (Eucheuma cottonii 추출물에 의한 인체 골육종암 Saos-2 세포의 자가사멸 유도)

  • Kang, Chang-Won;Kang, Min-Jae;Kim, Kyong Rok;Kim, Nan-Hee;Seo, Yong Bae;Kang, Keon-Hee;Kim, Sang-Ho;Kim, Gun-Do
    • Journal of Life Science
    • /
    • v.26 no.2
    • /
    • pp.147-154
    • /
    • 2016
  • Osteosarcoma (OS) is the most common and malignant bone tumors. Although many types of resection surgery and experimental agents were developed, median survival and clinical prognosis are poorly investigated. Recently, several researches have reported that Eucheuma cottonii has potent as protective effects of coal dust-induced lung damage via inhibition of malondialdehyde (MDA) and oxidative stress in bronchoalveolar lavage fluids (BALF). However, anti-cancer effects and specific molecular mechanism of extract from Eucheuma cottonii (EE) has not been clearly studied yet. This study evaluated that anti-cancer potential of EE in human osteosarcoma Saos-2 cells. EE indicated cytotoxicity on Saos-2 cells in a dose-dependent manner. Morphological degradation and nucleic condensation were also observed under the EE treatment. However, it did not significantly affect on non-cancerous kidney HEK-293 cells under the same concentration which is shown cytotoxicity on Saos-2 cells. The phosphorylation of Fas-Associated Death Domain (FADD) and expression of cleaved caspase-8, -7 and -3 were upregulated in a dose-dependent manner. In immunofluorescence staining, expression level of Fas and cleaved PARP were upregulated by EE treatment. Furthermore, treatment of EE induces upregulation of sub G1 phase by flow cytometry analysis. The results demonstrated that EE has a therapeutic potential against osteosarcoma via FADD mediated caspase cascade apoptosis signal pathway.

The Mechanism of Interferon-$\gamma$ Induced Cytotoxicity on the Lung Cancer Cell Line, A549 (인터페론감마에 의한 A549 폐암세포주 세포독성의 기전)

  • Oh, Yeon-Mok;Yoo, Chul-Gyu;Chung, Hee-Soon;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.43 no.1
    • /
    • pp.63-68
    • /
    • 1996
  • Background: Interferon-$\gamma$ has various biologic effects, including antiviral effect, antitumor proliferative effect, activation of macrophage and B lymphocyte, and increased expression of major histocompatibility complex. Especially, antitumor proliferative effect of interferon-$\gamma$ has already been proved to be important in vivo as well as in vitro. And, clinical studies of interferon-$\gamma$ have been tried in lung cancer patients. However, the mechanism of antitumor effect of interferon-$\gamma$ has not yet been established despite of many hypotheses. "Necrosis" is a type of cell death which is well known to occur in the circumstances of severe stresses. In contrast, "apoptosis" is another type of cell death which occurs in such biological circumstances as embryonic development, regression of organs, and self-tolerance of lymphocytes. And, apoptosis is an active process of cell death in which cells are dying with fragmentations of their cytoplasms and nuclei. And, in the process of apoptosis the DNAs of cells are cleaved between nucleosomes by unidentified endonuclease and therefore DNAs of apoptotic cells result in a typical electrophoresis pattern known as DNA ladder pattern. Recently it has been suggested that cytotoxic effect of interferon-$\gamma$ occurs via apoptosis. To elucidate the mechanism of antitumor cytotoxic effect of interferon-$\gamma$, we microscopically observed a lung cancer cell line, A549 which was treated with interferon-$\gamma$. We observed A545 treated with interferon-$\gamma$ was dying fragmented. And so, we performed this study to find out that the mechanism of antitumor cytotoxic effect of interferon-$\gamma$ be apoptosis. Method: We treated A549, human lung cancer cell line with various concentration of interferon-$\gamma$ and quantified its cytotoxic effect of various periods, 24 hours, 72 hours and, 120 hours by MTT(dimethylthiazolyl diphenyltetrazolium bromide) bioassay. Also, after we treated A549 with 100 units/mi of interferon-$\gamma$ for 120 hours, we observed the pattern of cell death with inverted microscope and we extracted DNAs from the dead A549 cells and observed the pattern of 1.5% agarose gel electrophoresis with ethidium bromide staining. Result: 1) Cytotoxic effect of interferon-$\gamma$ on A549: For the first 24 hours, threre was little cytotoxic effect and for between 24 hours and 72 hours, there was the beginning of cytotoxic effect and for 120 hours there was increased cytotoxic effect. 2) Pattern of A549 cell death by interferon-$\gamma$: We observed with inverted microscope that A549 cells were dying fragmented. 3) DNA ladder pattern of gel electrophoresis: We observed DNA ladder pattern of gel electrophoresis of extracted DNAs from dead A549 cells. Conclusion: We concluded that the mechanism of interferon-$\gamma$induced cytotoxicity on lung cancer cell line, A549 be via apoptosis.

  • PDF