DOI QR코드

DOI QR Code

Tumor-suppressor Protein p53 Sensitizes Human Colorectal Carcinoma HCT116 Cells to 17α-estradiol-induced Apoptosis via Augmentation of Bak/Bax Activation

17α-Estradiol에 의한 인체 대장암 세포주 HCT116의 에폽토시스에 수반되는 Bak/Bax의 활성화에 미치는 종양억제단백질 p53의 강화효과

  • Han, Cho Rong (Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Lee, Ji Young (Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Kim, Dongki (Daegu Science High School) ;
  • Kim, Hyo Young (Daegu Science High School) ;
  • Kim, Se Jin (Daegu Science High School) ;
  • Jang, Seokjoon (Daegu Science High School) ;
  • Kim, Yoon Hee (Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Jun, Do Youn (Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Kim, Young Ho (Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University)
  • 한초롱 (경북대학교 자연과학대학 생명과학부) ;
  • 이지영 (경북대학교 자연과학대학 생명과학부) ;
  • 김동기 (대구과학고등학교) ;
  • 김효영 (대구과학고등학교) ;
  • 김세진 (대구과학고등학교) ;
  • 장석준 (대구과학고등학교) ;
  • 김윤희 (경북대학교 자연과학대학 생명과학부) ;
  • 전도연 (경북대학교 자연과학대학 생명과학부) ;
  • 김영호 (경북대학교 자연과학대학 생명과학부)
  • Received : 2013.09.23
  • Accepted : 2013.10.24
  • Published : 2013.10.30

Abstract

The regulatory effect of the tumor-suppressor protein p53 on the apoptogenic activity of $17{\alpha}$-estradiol ($17{\alpha}-E_2$) was compared between HCT116 ($p53^{+/+}$) and HCT116 ($p53^{-/-}$) cells. When the HCT116 ($p53^{+/+}$) and HCT116 ($p53^{-/-}$) cells were treated with $2.5{\sim}10{\mu}M$ $17{\alpha}-E_2$ for 48 h or with $10{\mu}M$for various time periods, cytotoxicity and an apoptotic sub-$G_1$ peak were induced in the HCT116 ($p53^{+/+}$) cells in a dose- and time-dependent manner. However, the HCT116 ($p53^{-/-}$) cells were much less sensitive to the apoptotic effect of $17{\alpha}-E_2$. Although $17{\alpha}-E_2$ induced aberrant mitotic spindle organization and incomplete chromosome congregation at the equatorial plate, $G_2/M$ arrest was induced to a similar extent in both cell types. In addition, $17{\alpha}-E_2$-induced activation of Bak and Bax, ${\Delta}{\Psi}m$ loss, and PARP degradation were more dominant in the HCT116 ($p53^{+/+}$) than in the HCT116 ($p53^{-/-}$) cells. In accordance with enhancement of p53 phosphorylation (Ser-15) and p53 levels, p21 and Bax levels were elevated in the HCT116 ($p53^{+/+}$) cells treated with $17{\alpha}-E_2$. The HCT116 ($p53^{-/-}$) cells exhibited barely or undetectable levels of p21 and Bax, regardless of $17{\alpha}-E_2$ treatment. On the other hand, although the level of Bcl-2 was slightly lower in the HCT116 ($p53^{+/+}$) than in the HCT116 ($p53^{-/-}$) cells, it remained relatively constant after the $17{\alpha}-E_2$ treatment. Together, these results show that among the components of the $17{\alpha}-E_2$-induced apoptotic-signaling pathway, which proceeds through mitotic spindle defects causing mitotic arrest, subsequent activation of Bak and Bax and the mitochondria-dependent caspase cascade, leading to PARP degradation, $17{\alpha}-E_2$-induced activation of Bak and Bax is the upstream target of proapoptotic action of p53.

$17{\alpha}$-estradiol ($17{\alpha}-E_2$)의 에폽토시스 유도활성에 미치는 종양억제단백질 p53의 조절효과를 조사하고자, $17{\alpha}-E_2$에 의해 유도되는 에폽토시스 현상들을 인체 대장암 세포주 유래 클론인 HCT116 ($p53^{+/+}$) 및 HCT116 ($p53^{-/-}$) 세포에서 비교하였다. HCT116 ($p53^{+/+}$) 및 HCT116 ($p53^{-/-}$) 세포를 $17{\alpha}-E_2$ ($2.5{\sim}10{\mu}M$)로 처리하거나 혹은 HCT116 ($p53^{+/+}$) 및 HCT116 ($p53^{-/-}$) 세포를 $10{\mu}M$ $17{\alpha}-E_2$로 시간 별로 처리한 결과, HCT116 ($p53^{+/+}$)에 있어서는 세포독성과 에폽토시스-관련 sub-G1 peak의 비율은 처리농도와 시간에 의존적으로 나타났다. 그러나 HCT116 ($p53^{-/-}$) 세포의 경우는 이러한 현상이 미약하게 나타났다. $17{\alpha}-E_2$에 의해 유도되는 비정상적 유사분열방추사 형성, 중기판 염색체 배열의 미완성, 이에 따른 유사분열정지($G_2/M$ arrest) 등의 현상은 HCT116 ($p53^{+/+}$) 및 HCT116 ($p53^{-/-}$) 세포에서 유사한 수준으로 나타났다. 이에 반해, $17{\alpha}-E_2$에 의해 유도되는 Bak과 Bax의 활성화, 미토콘드리아의 막전위 상실(${\Delta}{\Psi}m$ loss), 그리고 PARP 분해 등의 현상은 HCT116 ($p53^{-/-}$) 세포에 비해 HCT116 ($p53^{+/+}$) 세포에서 훨씬 높은 수준으로 확인되었다. 아울러 $17{\alpha}-E_2$로 처리된 HCT116 ($p53^{+/+}$) 세포에서 확인되는 p53 (Ser-15)의 인산화 및 p53 수준의 증가와 일치하여, 세포 내의 p21및 Bax 수준도 현저히 증가하였다. 이때 $17{\alpha}-E_2$로 처리된 HCT116 ($p53^{-/-}$) 세포에서는 p21 및 Bax의 발현수준이 매우 낮았다. 한편, 에폽토시스 억제단백질인 Bcl-2 단백질 수준은 HCT116 ($p53^{-/-}$) 세포에 비해 HCT116 ($p53^{+/+}$) 세포에서 다소 낮았으나, 이러한 Bcl-2 단백질 수준은 $17{\alpha}-E_2$ 처리 후에도 크게 변화하지 않는 것으로 나타났다. 이러한 결과들은 $17{\alpha}-E_2$ 처리에 의해 유도되는 에폽토시스 유도 경로의 구성원들의 변화, 즉 비정상적 유사분열방추사 형성 및 이에 따른 유사분열정지($G_2/M$ arrest), 뒤이은 Bak 및 Bax의 활성화, 미토콘드리아의 막전위 상실, 그리고 이에 수반되는 caspase cascade 활성화 및 PARP 분해로 진행되는 에폽토시스 현상들 중에서, Bak 및 Bax의 활성화 단계가 종양억제단백질 p53의 에폽토시스 증진 활성에 의해 양성적으로 조절되는 작용 타켓임을 보여준다.

Keywords

References

  1. Adams, J. M. and Cory, S. 2007. Bcl-2-regulated apoptosis: mechanism and therapeutic potential. Curr Opin Immunol 19, 488-496. https://doi.org/10.1016/j.coi.2007.05.004
  2. Ashkenazi, A. and Dixit, V. M. 1999. Apoptosis control by death and decoy receptors. Curr Opin Cell Biol 11, 255-260. https://doi.org/10.1016/S0955-0674(99)80034-9
  3. Batsi, C., Markopoulou, S., Kontargiris, E., Charalambous, C., Thomas, C., Christoforidis, S., Kanavaros, P., Constantinou, A. I., Marcu, K. B. and Kolettas, E. 2009. Bcl-2 blocks 2-methoxyestradiol induced leukemia cell apoptosis by a $p27^{Kip1}$-dependent $G_{1}$/S cell cycle arrest in conjunction with NF-kB activation. Biochem Pharmacol 78, 33-44. https://doi.org/10.1016/j.bcp.2009.03.017
  4. Behl, C. 1998. Effects of glucocorticoids on oxidative stressinduced hippocampal cell death: implications for the pathogenesis of Alzheimer's disease. Exp Gerontol 33, 689-696. https://doi.org/10.1016/S0531-5565(98)00019-9
  5. Behl, C. and Holsboer, F. 1999. The female sex hormone estrogen as a neuroprotectant. Trends Pharmacol Sci 20, 441-444. https://doi.org/10.1016/S0165-6147(99)01392-9
  6. Chipuk, J. E. and Green, D. R. 2008. How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol 18, 157-164. https://doi.org/10.1016/j.tcb.2008.01.007
  7. Chipuk, J. E., Moldoveanu, T., Llambi, F., Parsons, M. J. and Green, D. R. 2010. The BCL-2 family reunion. Mol Cell 37, 299-310. https://doi.org/10.1016/j.molcel.2010.01.025
  8. Czabotar, P. E., Colman, P. M. and Huang, D. C. 2009. Bax activation by Bim? Cell Death Differ 16, 1187-1191. https://doi.org/10.1038/cdd.2009.83
  9. Danel, L., Menouni, M., Cohen, J. H., Magaud, J. P., Lenoir, G., Revillard, J. P. and Saez, S. 1985. Distribution of androgen and estrogen receptors among lymphoid and haemopoietic cell lines. Leuk Res 9, 1373-1378. https://doi.org/10.1016/0145-2126(85)90125-0
  10. Desagher, S. and Martinou, J. C. 2000. Mitochondria as the central control point of apoptosis. Trends Cell Biol 10, 369-377. https://doi.org/10.1016/S0962-8924(00)01803-1
  11. Desagher, S., Osen-Sand, A., Nichols, A., Eskes, R., Montessuit, S., Lauper, S., Maundrell, K., Antonsson, B. and Martinou, J. C. 1999. Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Bio1 144, 891-901. https://doi.org/10.1083/jcb.144.5.891
  12. Dykens, J. A., Moos, W. H., Howell, N., Dykens, J. A., Moos, W. H. and Howell, N. 2005. Development of $17{\alpha}$-estradiol as a neuroprotective therapeutic agent: rationale and results from a phase I clinical study. Ann NY Acad Sci 1052, 116-135. https://doi.org/10.1196/annals.1347.008
  13. Evans, R. M. 1988. The steroid and thyroid hormone receptor superfamily. Science 240, 889-895. https://doi.org/10.1126/science.3283939
  14. Furukawa, Y., Iwase, S., Kikuchi, J., Terui, Y., Nakamura, M., Yamada, H., Kano, Y. and Matsuda, M. 2000. Phosphorylation of Bcl-2 protein by CDC2 kinase during G2/M phases and its role in cell cycle regulation. J Biol Chem 275, 21661-21667. https://doi.org/10.1074/jbc.M906893199
  15. Gao, N., Rahmani, M., Dent, P. and Grant, S. 2005. 2-Methoxyestradiol-induced apoptosis in human leukemia cells proceeds through a reactive oxygen species and Aktdependent process. Oncogene 24, 3797-809. https://doi.org/10.1038/sj.onc.1208530
  16. Gross, A., McDonnell, J. M. and Korsmeyer, S. J. 1999. BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13, 1899-1911. https://doi.org/10.1101/gad.13.15.1899
  17. Ha, J. H., Shin, J. S., Yoon, M. K., Lee, M. S., He, F., Bae, K. H., Yoon, H. S., Lee, C. K., Park, S. G., Muto, Y. and Chi, S. W. 2013. Dual-site interactions of p53 protein transactivation domain with anti-apoptotic Bcl-2 family proteins reveal a highly convergent mechanism of divergent p53 pathways. J Biol Chem 288, 7387-7398. https://doi.org/10.1074/jbc.M112.400754
  18. Han, C. R., Jun, D. Y., Kim, Y. H., Lee, J. Y. and Kim, Y. H. 2013. Prometaphase arrest-dependent phosphorylation of Bcl-2 family proteins and activation of mitochondrial apoptotic pathway are associated with $17{\alpha}$-estradiol-induced apoptosis in human Jurkat T cells. Biochim Biophys Acta 183, 2220-2232.
  19. Jun, D. Y., Kim, J. S., Park, H. S., Han, C. R., Fang, Z., Woo, M. H., Rhee, I. K. and Kim, Y. H. 2007. Apoptogenic activity of auraptene of Zanthoxylum schinifolium toward human acute leukemia Jurkat T cells is associated with ER stress-mediated caspase-8 activation that stimulates mitochondria-dependent or -independent caspase cascade. Carcinogenesis 28, 1303-1313. https://doi.org/10.1093/carcin/bgm028
  20. Jun, D. Y., Park, H. S., Kim, J. S., Kim, J. S., Park, W., Song, B. H., Kim, H. S., Taub, D. and Kim, Y. H. 2008. $17{\alpha}$-estradiol arrests cell cycle progression at G2/M and induces apoptotic cell death in human acute leukemia Jurkat T cells. Toxicol Appl Pharmacol 231, 401-412. https://doi.org/10.1016/j.taap.2008.05.023
  21. Kameda, T., Mano, H., Yuasa, T., Mori, Y., Miyazawa, K., Shiokawa, M., Nakamaru, Y., Hiroi, E., Hiura, K., Kameda, A., Yang, N. N., Hekeda, Y. and Kumegawa, M. 1997. Estrogen inhibits bone resorption by directly inducing apoptosis of the bone-resorbing osteoclasts. J Exp Med 186, 489-495. https://doi.org/10.1084/jem.186.4.489
  22. Lee, J. W. and Kim, Y. H. 2011. Activation of pro-apoptotic multidomain Bcl-2 family member Bak and mitochondriadependent caspase cascade are involved in p-coumaric acidinduced apoptosis of Jurkat T cells. J Life Sci 21, 1678-1688. https://doi.org/10.5352/JLS.2011.21.12.1678
  23. Lepley, D. M. and Pelling, J. C. 1997. Induction of p21/WAF1 and G1 cell-cycle arrest by the chemopreventive agent apigenin. Mol Carcinog 19, 74-82. https://doi.org/10.1002/(SICI)1098-2744(199707)19:2<74::AID-MC2>3.0.CO;2-L
  24. Mueck, A. O. and Seeger, H. 2010. 2-Methoxyestradiol-Biology and mechanism of action. Steroids 75, 625-631. https://doi.org/10.1016/j.steroids.2010.02.016
  25. Okasha, S. A., Ryu, S., Do, Y., McKallip, R. J., Nagarkatti, M. and Nagarkatti, P. S. 2001. Evidence for estradiol-induced apoptosis and dysregulated T cell maturation in the thymus. Toxicology 163, 49-62. https://doi.org/10.1016/S0300-483X(01)00374-2
  26. Park, H. S., Jun, D. Y., Han, C. R., Woo, H. J. and Kim, Y. H. 2011. Proteasome inhibitor MG132-induced apoptosis via ER stress-mediated apoptotic pathway and its potentiation by protein tyrosine kinase $p56^{lck}$ in human Jurkat T cells. Biochem Pharmacol 82, 1110-1125. https://doi.org/10.1016/j.bcp.2011.07.085
  27. Tomita, Y., Marchenko, N., Erster, S., Nemajerova, A., Dehner, A., Klein, C., Pan, H., Kessler, H., Pancoska, P. and Moll, U. M. 2006. WT p53, but not tumor-derived mutants, bind to Bcl2 via the DNA binding domain and induce mitochondrial permeabilization. J Biol Chem 281, 8600-8606. https://doi.org/10.1074/jbc.M507611200
  28. Verenich, S. and Gerk, P. M. 2010. Therapeutic promises of 2-methoxyestradiol and its drug disposition challenges. Mol Pharm 7, 2030-2039. https://doi.org/10.1021/mp100190f
  29. Vermeulen, K., Van Bockstaele, D. R. and Berneman, Z. N. 2003. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif 36, 131-149. https://doi.org/10.1046/j.1365-2184.2003.00266.x
  30. Wise, P. M. 2003. Estrogens: protective or risk factors in brain function? Prog Neurobiol 69, 181-191. https://doi.org/10.1016/S0301-0082(03)00035-2
  31. Wise, P. M., Dubal, D. B., Wilson, M. E., Rau, S. W. and Bottner, M. 2001. Minireview: neuroprotective effects of estrogen-new insights into mechanisms of action. Endocrinology 142, 969-973.