Tumor-suppressor Protein p53 Sensitizes Human Colorectal Carcinoma HCT116 Cells to 17α-estradiol-induced Apoptosis via Augmentation of Bak/Bax Activation

17α-Estradiol에 의한 인체 대장암 세포주 HCT116의 에폽토시스에 수반되는 Bak/Bax의 활성화에 미치는 종양억제단백질 p53의 강화효과

  • Han, Cho Rong (Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Lee, Ji Young (Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Kim, Dongki (Daegu Science High School) ;
  • Kim, Hyo Young (Daegu Science High School) ;
  • Kim, Se Jin (Daegu Science High School) ;
  • Jang, Seokjoon (Daegu Science High School) ;
  • Kim, Yoon Hee (Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Jun, Do Youn (Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University) ;
  • Kim, Young Ho (Laboratory of Immunobiology, School of Life Science and Biotechnology, College of Natural Sciences, Kyungpook National University)
  • 한초롱 (경북대학교 자연과학대학 생명과학부) ;
  • 이지영 (경북대학교 자연과학대학 생명과학부) ;
  • 김동기 (대구과학고등학교) ;
  • 김효영 (대구과학고등학교) ;
  • 김세진 (대구과학고등학교) ;
  • 장석준 (대구과학고등학교) ;
  • 김윤희 (경북대학교 자연과학대학 생명과학부) ;
  • 전도연 (경북대학교 자연과학대학 생명과학부) ;
  • 김영호 (경북대학교 자연과학대학 생명과학부)
  • Received : 2013.09.23
  • Accepted : 2013.10.24
  • Published : 2013.10.30


The regulatory effect of the tumor-suppressor protein p53 on the apoptogenic activity of $17{\alpha}$-estradiol ($17{\alpha}-E_2$) was compared between HCT116 ($p53^{+/+}$) and HCT116 ($p53^{-/-}$) cells. When the HCT116 ($p53^{+/+}$) and HCT116 ($p53^{-/-}$) cells were treated with $2.5{\sim}10{\mu}M$ $17{\alpha}-E_2$ for 48 h or with $10{\mu}M$for various time periods, cytotoxicity and an apoptotic sub-$G_1$ peak were induced in the HCT116 ($p53^{+/+}$) cells in a dose- and time-dependent manner. However, the HCT116 ($p53^{-/-}$) cells were much less sensitive to the apoptotic effect of $17{\alpha}-E_2$. Although $17{\alpha}-E_2$ induced aberrant mitotic spindle organization and incomplete chromosome congregation at the equatorial plate, $G_2/M$ arrest was induced to a similar extent in both cell types. In addition, $17{\alpha}-E_2$-induced activation of Bak and Bax, ${\Delta}{\Psi}m$ loss, and PARP degradation were more dominant in the HCT116 ($p53^{+/+}$) than in the HCT116 ($p53^{-/-}$) cells. In accordance with enhancement of p53 phosphorylation (Ser-15) and p53 levels, p21 and Bax levels were elevated in the HCT116 ($p53^{+/+}$) cells treated with $17{\alpha}-E_2$. The HCT116 ($p53^{-/-}$) cells exhibited barely or undetectable levels of p21 and Bax, regardless of $17{\alpha}-E_2$ treatment. On the other hand, although the level of Bcl-2 was slightly lower in the HCT116 ($p53^{+/+}$) than in the HCT116 ($p53^{-/-}$) cells, it remained relatively constant after the $17{\alpha}-E_2$ treatment. Together, these results show that among the components of the $17{\alpha}-E_2$-induced apoptotic-signaling pathway, which proceeds through mitotic spindle defects causing mitotic arrest, subsequent activation of Bak and Bax and the mitochondria-dependent caspase cascade, leading to PARP degradation, $17{\alpha}-E_2$-induced activation of Bak and Bax is the upstream target of proapoptotic action of p53.

$17{\alpha}$-estradiol ($17{\alpha}-E_2$)의 에폽토시스 유도활성에 미치는 종양억제단백질 p53의 조절효과를 조사하고자, $17{\alpha}-E_2$에 의해 유도되는 에폽토시스 현상들을 인체 대장암 세포주 유래 클론인 HCT116 ($p53^{+/+}$) 및 HCT116 ($p53^{-/-}$) 세포에서 비교하였다. HCT116 ($p53^{+/+}$) 및 HCT116 ($p53^{-/-}$) 세포를 $17{\alpha}-E_2$ ($2.5{\sim}10{\mu}M$)로 처리하거나 혹은 HCT116 ($p53^{+/+}$) 및 HCT116 ($p53^{-/-}$) 세포를 $10{\mu}M$ $17{\alpha}-E_2$로 시간 별로 처리한 결과, HCT116 ($p53^{+/+}$)에 있어서는 세포독성과 에폽토시스-관련 sub-G1 peak의 비율은 처리농도와 시간에 의존적으로 나타났다. 그러나 HCT116 ($p53^{-/-}$) 세포의 경우는 이러한 현상이 미약하게 나타났다. $17{\alpha}-E_2$에 의해 유도되는 비정상적 유사분열방추사 형성, 중기판 염색체 배열의 미완성, 이에 따른 유사분열정지($G_2/M$ arrest) 등의 현상은 HCT116 ($p53^{+/+}$) 및 HCT116 ($p53^{-/-}$) 세포에서 유사한 수준으로 나타났다. 이에 반해, $17{\alpha}-E_2$에 의해 유도되는 Bak과 Bax의 활성화, 미토콘드리아의 막전위 상실(${\Delta}{\Psi}m$ loss), 그리고 PARP 분해 등의 현상은 HCT116 ($p53^{-/-}$) 세포에 비해 HCT116 ($p53^{+/+}$) 세포에서 훨씬 높은 수준으로 확인되었다. 아울러 $17{\alpha}-E_2$로 처리된 HCT116 ($p53^{+/+}$) 세포에서 확인되는 p53 (Ser-15)의 인산화 및 p53 수준의 증가와 일치하여, 세포 내의 p21및 Bax 수준도 현저히 증가하였다. 이때 $17{\alpha}-E_2$로 처리된 HCT116 ($p53^{-/-}$) 세포에서는 p21 및 Bax의 발현수준이 매우 낮았다. 한편, 에폽토시스 억제단백질인 Bcl-2 단백질 수준은 HCT116 ($p53^{-/-}$) 세포에 비해 HCT116 ($p53^{+/+}$) 세포에서 다소 낮았으나, 이러한 Bcl-2 단백질 수준은 $17{\alpha}-E_2$ 처리 후에도 크게 변화하지 않는 것으로 나타났다. 이러한 결과들은 $17{\alpha}-E_2$ 처리에 의해 유도되는 에폽토시스 유도 경로의 구성원들의 변화, 즉 비정상적 유사분열방추사 형성 및 이에 따른 유사분열정지($G_2/M$ arrest), 뒤이은 Bak 및 Bax의 활성화, 미토콘드리아의 막전위 상실, 그리고 이에 수반되는 caspase cascade 활성화 및 PARP 분해로 진행되는 에폽토시스 현상들 중에서, Bak 및 Bax의 활성화 단계가 종양억제단백질 p53의 에폽토시스 증진 활성에 의해 양성적으로 조절되는 작용 타켓임을 보여준다.


Supported by : Kyungpook National University


  1. Adams, J. M. and Cory, S. 2007. Bcl-2-regulated apoptosis: mechanism and therapeutic potential. Curr Opin Immunol 19, 488-496.
  2. Ashkenazi, A. and Dixit, V. M. 1999. Apoptosis control by death and decoy receptors. Curr Opin Cell Biol 11, 255-260.
  3. Batsi, C., Markopoulou, S., Kontargiris, E., Charalambous, C., Thomas, C., Christoforidis, S., Kanavaros, P., Constantinou, A. I., Marcu, K. B. and Kolettas, E. 2009. Bcl-2 blocks 2-methoxyestradiol induced leukemia cell apoptosis by a $p27^{Kip1}$-dependent $G_{1}$/S cell cycle arrest in conjunction with NF-kB activation. Biochem Pharmacol 78, 33-44.
  4. Behl, C. 1998. Effects of glucocorticoids on oxidative stressinduced hippocampal cell death: implications for the pathogenesis of Alzheimer's disease. Exp Gerontol 33, 689-696.
  5. Behl, C. and Holsboer, F. 1999. The female sex hormone estrogen as a neuroprotectant. Trends Pharmacol Sci 20, 441-444.
  6. Chipuk, J. E. and Green, D. R. 2008. How do BCL-2 proteins induce mitochondrial outer membrane permeabilization? Trends Cell Biol 18, 157-164.
  7. Chipuk, J. E., Moldoveanu, T., Llambi, F., Parsons, M. J. and Green, D. R. 2010. The BCL-2 family reunion. Mol Cell 37, 299-310.
  8. Czabotar, P. E., Colman, P. M. and Huang, D. C. 2009. Bax activation by Bim? Cell Death Differ 16, 1187-1191.
  9. Danel, L., Menouni, M., Cohen, J. H., Magaud, J. P., Lenoir, G., Revillard, J. P. and Saez, S. 1985. Distribution of androgen and estrogen receptors among lymphoid and haemopoietic cell lines. Leuk Res 9, 1373-1378.
  10. Desagher, S. and Martinou, J. C. 2000. Mitochondria as the central control point of apoptosis. Trends Cell Biol 10, 369-377.
  11. Desagher, S., Osen-Sand, A., Nichols, A., Eskes, R., Montessuit, S., Lauper, S., Maundrell, K., Antonsson, B. and Martinou, J. C. 1999. Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Bio1 144, 891-901.
  12. Dykens, J. A., Moos, W. H., Howell, N., Dykens, J. A., Moos, W. H. and Howell, N. 2005. Development of $17{\alpha}$-estradiol as a neuroprotective therapeutic agent: rationale and results from a phase I clinical study. Ann NY Acad Sci 1052, 116-135.
  13. Evans, R. M. 1988. The steroid and thyroid hormone receptor superfamily. Science 240, 889-895.
  14. Furukawa, Y., Iwase, S., Kikuchi, J., Terui, Y., Nakamura, M., Yamada, H., Kano, Y. and Matsuda, M. 2000. Phosphorylation of Bcl-2 protein by CDC2 kinase during G2/M phases and its role in cell cycle regulation. J Biol Chem 275, 21661-21667.
  15. Gao, N., Rahmani, M., Dent, P. and Grant, S. 2005. 2-Methoxyestradiol-induced apoptosis in human leukemia cells proceeds through a reactive oxygen species and Aktdependent process. Oncogene 24, 3797-809.
  16. Gross, A., McDonnell, J. M. and Korsmeyer, S. J. 1999. BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13, 1899-1911.
  17. Ha, J. H., Shin, J. S., Yoon, M. K., Lee, M. S., He, F., Bae, K. H., Yoon, H. S., Lee, C. K., Park, S. G., Muto, Y. and Chi, S. W. 2013. Dual-site interactions of p53 protein transactivation domain with anti-apoptotic Bcl-2 family proteins reveal a highly convergent mechanism of divergent p53 pathways. J Biol Chem 288, 7387-7398.
  18. Han, C. R., Jun, D. Y., Kim, Y. H., Lee, J. Y. and Kim, Y. H. 2013. Prometaphase arrest-dependent phosphorylation of Bcl-2 family proteins and activation of mitochondrial apoptotic pathway are associated with $17{\alpha}$-estradiol-induced apoptosis in human Jurkat T cells. Biochim Biophys Acta 183, 2220-2232.
  19. Jun, D. Y., Kim, J. S., Park, H. S., Han, C. R., Fang, Z., Woo, M. H., Rhee, I. K. and Kim, Y. H. 2007. Apoptogenic activity of auraptene of Zanthoxylum schinifolium toward human acute leukemia Jurkat T cells is associated with ER stress-mediated caspase-8 activation that stimulates mitochondria-dependent or -independent caspase cascade. Carcinogenesis 28, 1303-1313.
  20. Jun, D. Y., Park, H. S., Kim, J. S., Kim, J. S., Park, W., Song, B. H., Kim, H. S., Taub, D. and Kim, Y. H. 2008. $17{\alpha}$-estradiol arrests cell cycle progression at G2/M and induces apoptotic cell death in human acute leukemia Jurkat T cells. Toxicol Appl Pharmacol 231, 401-412.
  21. Kameda, T., Mano, H., Yuasa, T., Mori, Y., Miyazawa, K., Shiokawa, M., Nakamaru, Y., Hiroi, E., Hiura, K., Kameda, A., Yang, N. N., Hekeda, Y. and Kumegawa, M. 1997. Estrogen inhibits bone resorption by directly inducing apoptosis of the bone-resorbing osteoclasts. J Exp Med 186, 489-495.
  22. Lee, J. W. and Kim, Y. H. 2011. Activation of pro-apoptotic multidomain Bcl-2 family member Bak and mitochondriadependent caspase cascade are involved in p-coumaric acidinduced apoptosis of Jurkat T cells. J Life Sci 21, 1678-1688.
  23. Lepley, D. M. and Pelling, J. C. 1997. Induction of p21/WAF1 and G1 cell-cycle arrest by the chemopreventive agent apigenin. Mol Carcinog 19, 74-82.<74::AID-MC2>3.0.CO;2-L
  24. Mueck, A. O. and Seeger, H. 2010. 2-Methoxyestradiol-Biology and mechanism of action. Steroids 75, 625-631.
  25. Okasha, S. A., Ryu, S., Do, Y., McKallip, R. J., Nagarkatti, M. and Nagarkatti, P. S. 2001. Evidence for estradiol-induced apoptosis and dysregulated T cell maturation in the thymus. Toxicology 163, 49-62.
  26. Park, H. S., Jun, D. Y., Han, C. R., Woo, H. J. and Kim, Y. H. 2011. Proteasome inhibitor MG132-induced apoptosis via ER stress-mediated apoptotic pathway and its potentiation by protein tyrosine kinase $p56^{lck}$ in human Jurkat T cells. Biochem Pharmacol 82, 1110-1125.
  27. Tomita, Y., Marchenko, N., Erster, S., Nemajerova, A., Dehner, A., Klein, C., Pan, H., Kessler, H., Pancoska, P. and Moll, U. M. 2006. WT p53, but not tumor-derived mutants, bind to Bcl2 via the DNA binding domain and induce mitochondrial permeabilization. J Biol Chem 281, 8600-8606.
  28. Verenich, S. and Gerk, P. M. 2010. Therapeutic promises of 2-methoxyestradiol and its drug disposition challenges. Mol Pharm 7, 2030-2039.
  29. Vermeulen, K., Van Bockstaele, D. R. and Berneman, Z. N. 2003. The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif 36, 131-149.
  30. Wise, P. M. 2003. Estrogens: protective or risk factors in brain function? Prog Neurobiol 69, 181-191.
  31. Wise, P. M., Dubal, D. B., Wilson, M. E., Rau, S. W. and Bottner, M. 2001. Minireview: neuroprotective effects of estrogen-new insights into mechanisms of action. Endocrinology 142, 969-973.