DOI QR코드

DOI QR Code

Effect of Ursolic Acid on the Development of Mouse Embryonic Stem Cells under Hypoxia

저산소 상태에서 우르솔산이 배아줄기세포 성장에 미치는 효과

  • Han, Gi Yeon (Seoul High School) ;
  • Park, Jae Hong (Maria Biotech Co.) ;
  • Oh, Keon Bong (Animal Biotechnology Division, National Institute of Animal Science, RDA) ;
  • Lee, Sei-Jung (BK21 PLUS Program for Creative Veterinary Science Research, Seoul National University)
  • 한기연 (서울고등학교) ;
  • 박재홍 ((주)마리아 바이오텍) ;
  • 오건봉 (국립축산과학원) ;
  • 이세중 (서울대학교 BK21플러스 수의창의인력양성사업단)
  • Received : 2013.09.05
  • Accepted : 2013.10.01
  • Published : 2013.10.30

Abstract

Ursolic acid (UA) a bio-active ingredient found in a variety of fruits and vegetables, and it has potent antioxidant activity. However, the role of UA in mouse embryonic stem (ES) cells is poorly understood. This study investigated the functional role of UA in regulating the development of mouse ES cells under hypoxia. Hypoxia did not exert a significant effect on the undifferentiated state of mouse ES cells. However, it induced reactive oxygen species (ROS) generation and increased the level of lactate dehydrogenase (LDH) production at 48 h of hypoxic exposure. Conversely, oxidative stress induced by hypoxia was significantly inhibited by UA ($30{\mu}M$) pretreatment. Hypoxia significantly decreased cell survival and the level of [$^3H$] thymidine incorporation, both of which recovered following pretreatment of UA. In addition, UA decreased the apoptotic effect of hypoxia by attenuating caspase-3 cleavage or by recovering cellular inhibition of the apoptotic protein (cIAP)-2 and Bcl-2 expression. We further found that UA decreased senescence-associated beta-galactosidase activity. We suggest that UA is a natural antioxidant and one of the functional modulators of hypoxia-induced survival, apoptosis, proliferation, and aging in mouse ES cells.

우르솔산(Ursolic acid)은 다양한 약재, 과일 그리고 야채 등으로 부터 분리되는 식물성 생리활성물질로서, 천연 항산화제로 널리 알려져 있지만, 배아줄기세포에서 우르솔산의 기능에 대한 연구는 아직까지 잘 이해되지 않고 있다. 본 연구에서는 저산소 상태에서 우르솔산이 배아줄기세포의 성장에 미치는 효과에 대해 조사하였다. 48시간 동안의 저산소 환경은 배아줄기세포의 미분화상태 및 전능성을 유지에 있어서 영향을 미치지 않았지만, 세포 내 활성산소종의 지속적인 생산과 이로 인한 lactate dehydrogenase 활성을 촉진 시켰다. 저산소에 의해 유도된 배아줄기세포의 산화적 스트레스는 $30{\mu}M$의 우르솔산의 처리로 인해 유의적으로 감소되었으며, 이러한 우르솔산의 활성산소 소거능력은 항산화제인 N-acetyl-cysteine (NAC)의 효과와 유사하였다. 저산소 환경은 또한 유의적으로 배아줄기세포의 생존과 증식을 감소 시킬 뿐만 아니라, 세포의 자살 및 노화를 유도함이 관찰되었지만, 강한 항산화 능력을 지닌 우르솔산은 세포를 저산소로부터 보호하여 정상수준으로 세포의 생존과 증식을 유지시키고, 세포 자살 관련 단백질(cleaved caspase-3, Bcl-2, 그리고 cIAP) 및 세포 노화 관련 단백질(beta-galactosidase)을 조절하는 탁월한 약리학적 효과를 가지고 있었다. 따라서 본 연구결과를 통해, 우르솔산은 강력한 천연 항산화제이며, 저산소에 의해 유도된 유해 기작을 제어함으로서, 배아줄기세포의 전능성을 유지시킬 수 있는 기능성 물질이라는 것을 알 수 있었다.

Keywords

References

  1. Agarwal, A., Gupta, S. and Sharma, R. K. 2005. Role of oxidative stress in female reproduction. Reprod Biol Endocrinol 14, 28.
  2. Aggarwal, B. B. and Shishodia, S. 2006. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol 14, 1397-1421.
  3. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 7, 248-254.
  4. Brett, C. M., Washington, C. B., Ott, R. J., Gutierrez, M. M. and Giacomini, K. M. 1993. Interaction of nucleoside analogues with the sodium-nucleoside transport system in brush border membrane vesicles from human kidney. Pharm Res 10, 423-426. https://doi.org/10.1023/A:1018948608211
  5. Chung, H. Y., Sung, B., Jung, K. J., Zou, Y. and Yu, B. P. 2006. The molecular inflammatory process in aging. Antioxid Redox Signal 8, 572-581. https://doi.org/10.1089/ars.2006.8.572
  6. Csete, M. 2005. Oxygen in the cultivation of stem cells. Ann N Y Acad Sci 1049, 1-8 . https://doi.org/10.1196/annals.1334.001
  7. Fischer, B. and Bavister, B. D. 1993. Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J Reprod Fertil 99, 673-679. https://doi.org/10.1530/jrf.0.0990673
  8. Forsyth, N. R., Musio, A., Vezzoni, P., Simpson, A. H., Noble, B. S. and McWhir, J. 2006. Physiologic oxygen enhances human embryonic stem cell clonal recovery and reduces chromosomal abnormalities. Cloning Stem Cells 8, 16-23. https://doi.org/10.1089/clo.2006.8.16
  9. Harman, D. 1956. Aging: A theory based on free radical and radiation chemistry. J Gerontol 11, 298-300. https://doi.org/10.1093/geronj/11.3.298
  10. Koestenbauer, S., Zech, N. H., Juch, H., Vanderzwalmen, P., Schoonjans, L. and Dohr, G. 2006. Embryonic stem cells: similarities and differences between human and murine embryonic stem cells. Am J Reprod Immunol 55, 169-180. https://doi.org/10.1111/j.1600-0897.2005.00354.x
  11. Lee, B. Y., Han, J. A., Im, J. S., Morrone, A., Johung, K., Goodwin, E. C., Kleijer, W. J., DiMaio, D. and Hwang, E. S. 2006. Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell 5, 187-195. https://doi.org/10.1111/j.1474-9726.2006.00199.x
  12. Lessene, G., Czabotar, P. E. and Colman, P. M. 2008. BCL-2 family antagonists for cancer therapy. Nat Rev Drug Discov 7, 989-1000. https://doi.org/10.1038/nrd2658
  13. Liu, J. 1995. Pharmacology of oleanolic acid and ursolic acid. J Ethnopharmacol 1, 57-68.
  14. Martin, I. and Grotewiel, M. S. 2006. Oxidative damage and age-related functional declines. Mech Ageing Dev 127, 411-423. https://doi.org/10.1016/j.mad.2006.01.008
  15. Maxam, A. M. and Gilbert, W. 1980. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol 65, 499-560. https://doi.org/10.1016/S0076-6879(80)65059-9
  16. Moon, D. O., Park, S. Y., Heo, M. S., Kim, K. C., Park, C., Ko, W. S., Choi, Y. H. and Kim, G. Y. 2006. Key regulators in bee venom-induced apoptosis are Bcl-2 and caspase-3 in human leukemic U937 cells through downregulation of ERK and Akt. Int Immunopharmacol 5, 1796-1807.
  17. Nijnik, A., Woodbine, L., Marchetti, C., Dawson, S., Lambe, T., Liu, C., Rodrigues, N. P., Crockford, T. L., Cabuy, E., Vindigni, A., Enver, T., Bell, J. I., Slijepcevic, P., Goodnow, C. C., Jeggo, P. A. and Cornall, R. J. 2007. DNA repair is limiting for haematopoietic stem cells during ageing. Nature 7, 686-690.
  18. Niwa, H. 2001. Molecular mechanism to maintain stem cell renewal of ES cells. Cell Struct Funct 26, 137-148. https://doi.org/10.1247/csf.26.137
  19. Pathak, A. K., Bhutani, M., Nair, A. S., Ahn, K. S., Chakraborty, A., Kadara, H., Guha, S., Sethi, G. and Aggarwal, B. B. 2007. Ursolic acid inhibits STAT3 activation pathway leading to suppression of proliferation and chemosensitization of human multiple myeloma cells. Mol Cancer Res 5, 943-955. https://doi.org/10.1158/1541-7786.MCR-06-0348
  20. Roig, R., Cascon, E., Arola, L., Blade, C. and Salvado, M. J. 2002. Procyanidins protect Fao cells against hydrogen peroxide-induced oxidative stress. Biochim Biophys Acta 15, 25-30.
  21. Saikumar, P., Dong, Z., Weinberg, J. M. and Venkatachalam, M. A. 1998. Mechanisms of cell death in hypoxia/reoxygenation injury. Oncogene 17, 3341-3349.
  22. Simon, H. U., Haj-Yehia, A. and Levi-Schaffer, F. 2000. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5, 415-418. https://doi.org/10.1023/A:1009616228304
  23. Ye, Z., Zhan, H., Mali, P., Dowey, S., Williams, D. M., Jang, Y. Y., Dang, C. V., Spivak, J. L., Moliterno, A. R. and Cheng, L. 2009. Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood 24, 5473-5480.
  24. Zhang, Y., Kong, C., Zeng, Y., Wang, L., Li, Z., Wang, H., Xu, C. and Sun, Y. 2010. Ursolic acid induces PC-3 cell apoptosis via activation of JNK and inhibition of Akt pathways in vitro. Mol Carcinog 49, 374-385.