• Title/Summary/Keyword: apoptosis-related genes

Search Result 333, Processing Time 0.03 seconds

Anti-tumor Effect of Kaempferol, a Component of Polygonati Rhizoma, in Lung Cancer Cells (폐암세포주에서 황정(黃精)의 주요 성분인 Kaempferol의 항암 효능)

  • Jeong, Young-Seok;Jeong, Ji-Cheon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.5
    • /
    • pp.816-822
    • /
    • 2011
  • Kaempferol, a component of Polygonati rhizoma, is one of the herbal flavonoids, which is used in therapeutic agent for anti-hypercholesterol, anti-hypertension and anti-diabetes. And it is also known to be effective in anti-cancer therapy for breast, prostate and other type of cancers. However, the anti-cancer therapeutic mechanisms are pooly understood. To address molecular mechanism underlying kaempferol-induced anti-cancer effects, we determined the effect of kaempferol on cell growth of the lung cancer cell lines, A549, H1299 and H460. From the FACS analysis, measurement of caspase activity, DAPI and tryptophan blue staining, and DNA fragmentation assay, we found that kaempferol induces apoptosis and H460 cells are most sensitive among the tested cell lines. In addition, we performed microarray to identify the genome-wide expression profiling regulated by kaempferol. Lots of cell cycle-related genes were under-expressed, whereas the genes related to TGF-beta/SMAD pathway were over-expressed in kaempferol-treated H460 cells. Additionally, kaempferol also increased expression levels of apoptosis related genes such as death receptors, FAS, TRAIL-R and TNF-R, and casepase-8 and caspase-10. Overall, our results suggest that kaempferol promotes anti-lung cancer therapeutic effects by inducing G1 arrest and apoptosis through TGF-beta/SMAD pathway and death receptors/caspase pathway, respectively.

Interleukin-10 UP-regulates TRAIL Gene Expression in the Mammary Epithelial Cell at the Involution Stage

  • B.H. Sohn;Y.M. Han;H.B. Moon;Kim, T.Y.;Y.S. Bae;Kim, S.J.;Lee, Kyung-Kwang
    • Proceedings of the KSAR Conference
    • /
    • 2001.03a
    • /
    • pp.59-59
    • /
    • 2001
  • Interleukin-10 (IL-10) is known as a regulator of inflammation and pathogenesis in mammalian organs, but its precise role is little known in the mammary gland. Our initial experiment showed that IL-10 expression levels in mice decreased at the lactation stage otherwise increased at the involution stage. To reveal the effects of IL-10 on the involution of mammary gland, expression profiles of the apoptosis-related genes were examined in transgenic mice expressing human IL-10 as well as in knock-out mice (IL-10-/-). Mild inflammatory legions by lymphocytes were observed in the mammary glands of transgenic lines at the lactation stage. The expression of TRAIL (Tumor necrosis factor-Related Apoptosis-Inducing Ligand) among the apoptosis-related genes was highly elevated in the transgenic mice while others were not significantly changed. Furthermore, TRAIL was down regulated by four fold in the IL-10-/- mice at the involution stage. The expression of DR4 was elevated at the involution stage of normal mice. DR4 was detected in the milk of transgenic mice but absent in that of normal mice. Our results proposed that the elevated IL-10 at the involution stage recruit lymphocytes and induce TRAIL and DR4 genes, therefore, lead to enter involution stage of mammary glands.

  • PDF

Toxicogenomic Effect of Liver-toxic Environmental Chemicals in Human Hepatoma Cell Line

  • Kim, Seung-Jun;Park, Hye-Won;Yu, So-Yeon;Kim, Jun-Sub;Ha, Jung-Mi;Youn, Jong-Pil;An, Yu-Ri;Oh, Moon-Ju;Kim, Youn-Jung;Ryu, Jae-Chun;Hwang, Seung-Yong
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.4
    • /
    • pp.310-316
    • /
    • 2009
  • Some environmental chemicals have been shown to cause liver-toxicity as the result of bioaccumulation. Particularly, fungicides have been shown to cause varying degrees of hepatictoxicity and to disrupt steroid hormone homeostasis in in vivo models. The principal objective of this study was to evaluate the liver-toxic responses of environmental chemicals-in this case selected fungicides and parasiticides-in order to determine whether or not this agent differentially affected its toxicogenomic activities in hepatic tumor cell lines. To determine the gene expression profiles of 3 fungicides (triadimefon, myclobutanil, vinclozolin) and 1 parasiticide (dibutyl phthalate), we utilized a modified HazChem human array V2. Additionally, in order to observe the differential alterations in its time-dependent activities, we conducted two time (3 hr, 48 hr) exposures to the respective IC20 values of four chemicals. As a result, we analyzed the expression profiles of a total of 1638 genes, and we identified 70 positive significant genes and 144 negative significant genes using four fungicidic and parasiticidic chemicals, using SAM (Significant Analysis of Microarray) methods (q-value<0.5%). These genes were analyzed and identified as being related to apoptosis, stress responses, germ cell development, cofactor metabolism, and lipid metabolism in GO functions and pathways. Additionally, we found 120 genes among those time-dependently differentially expressed genes, using 1-way ANOVA (P-value<0.05). These genes were related to protein metabolism, stress responses, and positive regulation of apoptosis. These data support the conclusion that the four tested chemicals have common toxicogenomic effects and evidence respectively differential expression profiles according to exposure time.

Development of Porcine Somatic Cell Nuclear Transfer Embryos Following Treatment Time of Endoplasmic Reticulum Stress Inhibitor

  • Kim, Mi-Jeong;Jung, Bae-Dong;Park, Choon-Keun;Cheong, Hee-Tae
    • Development and Reproduction
    • /
    • v.25 no.1
    • /
    • pp.43-53
    • /
    • 2021
  • We examine the effect of endoplasmic reticulum (ER) stress inhibitor treatment time on the in vitro development of porcine somatic cell nuclear transfer (SCNT) embryos. Porcine SCNT embryos were classified by four groups following treatment time of ER stress inhibitor, tauroursodeoxycholic acid (TUDCA; 100 µM); 1) non-treatment group (control), 2) treatment during micromanipulation process and for 3 h after fusion (NT+3 h group), 3) treatment only during in vitro culture after fusion (IVC group), and 4) treatment during micromanipulation process and in vitro culture (NT+IVC group). SCNT embryos were cultured for six days to examine the X-box binding protein 1 (Xbp1) splicing levels, the expression levels of ER stress-associated genes, oxidative stress-related genes, and apoptosis-related genes in blastocysts, and in vitro development. There was no significant difference in Xbp1 splicing level among all groups. Reduced expression of some ER stress-associated genes was observed in the treatment groups. The oxidative stress and apoptosis-related genes were significantly lower in all treatment groups than control (p<0.05). Although blastocyst development rates were not different among all groups (17.5% to 21.7%), the average cell number in blastocysts increased significantly in NT+3 h (48.5±2.3) and NT+IVC (47.7±2.4) groups compared to those of control and IVC groups (p<0.05). The result of this study suggests that the treatment of ER stress inhibitor on SCNT embryos from the micromanipulation process can improve the reprogramming efficiency of SCNT embryos by inhibiting the ER and oxidative stresses that may occur early in the SCNT process.

Characterization of immune gene expression in rock bream (Oplegnathus fasciatus) kidney infected with rock bream iridovirus (RBIV) using microarray

  • Myung-Hwa Jung;Sung-Ju Jung
    • Journal of fish pathology
    • /
    • v.36 no.2
    • /
    • pp.191-211
    • /
    • 2023
  • Rock bream iridovirus (RBIV) causes high mortality and economic losses in rock bream (Oplegnathus fasciatus) aquaculture industry in Korea. Although, the immune responses of rock bream under RBIV infection have been studied, there is not much information at the different stages of infection (initial, middle and recovery). Gene expression profiling of rock bream under different RBIV infection stages was investigated using a microarray approaches. In total, 5699 and 6557 genes were significantly up- or down-regulated over 2-fold, respectively, upon RBIV infection. These genes were grouped into categories such as innate immune responses, adaptive immune responses, complements, lectin, antibacterial molecule, stress responses, DNA/RNA binding, energy metabolism, transport and cell cycle. Interestingly, hemoglobins (α and β) appears to be important during pathogenesis; it is highly up-regulated at the initial stage and is gradually decreased when the pathogen most likely multiplying and fish begin to die at the middle or later stage. Expression levels were re-elevated at the recovery stage of infection. Among up-regulated genes, interferon-related genes were found to be responsive in most stages of RBIV infection. Moreover, X-linked inhibitor of apoptosis (XIAP)-associated factor 1 (XAF1) expression was high, whereas expression of apoptosis-relate genes were low. In addition, stress responses were highly induced in the virus infection. The cDNA microarray data were validated using quantative real-time PCR. Our results provide novel inslights into the broad immune responses triggered by RBIV at different infection stages.

The Gene Expression Profiling in Murine Cortical Cells Undergoing Programmed Cell Death (PCD) Induced by Serum Deprivation

  • Yang, Moon-Hee;Yoo, Kyung-Hyun;Yook, Yeon-Joo;Park, Eun-Young;Jeon, Jeong-Ok;Choi, Seo-Hee;Park, So-Young;Woo, Yu-Mi;Lee, Min-Joo;Park, Jong-Hoon
    • BMB Reports
    • /
    • v.40 no.2
    • /
    • pp.277-285
    • /
    • 2007
  • PCD (programmed cell death) is important mechanism for development, homeostasis and disease. To analyze the gene expression pattern in brain cells undergoing PCD in response to serum deprivation, we analyzed the cDNA microarray consisting of 2,300 genes and 7 housekeeping genes of cortical cells derived from mouse embryonic brain. Cortical cells were induced apoptosis by serum deprivation for 8 hours. We identified 69 up-regulated genes and 21 down-regulated genes in apoptotic cells. Based on the cDNA microarray data four genes were selected and analyzed by RT-PCR and northern blotting. To characterize the role of UNC-51-like kinase (ULK2) gene in PCD, we investigated cell death effect by ULK2. And we examined expression of several genes that related with PCD. Especially GAPDH was increased by ULK2. Theses findings indicated that ULK2 is involved in apoptosis through p53 pathway.

Functional Classification of Gene Expression Profiles During Differentiation of Mouse Embryonic Cells on Monolayer Culture

  • Leem, Sun-Hee;Ahn, Eun-Kyung;Heo, Jeong-Hoon
    • Animal cells and systems
    • /
    • v.13 no.2
    • /
    • pp.235-245
    • /
    • 2009
  • Embryonic stem (ES) cells have a capability to generate all types of cells. However, the mechanism by which ES cells differentiate into specific cell is still unclear. Using microarray technology, the differentiation process in mouse embryonic stem cells was characterized by temporal gene expression changes of mouse ES cells during differentiation in a monolayer culture. A large number of genes were differentially regulated from 1 day to 14 days, and less number of genes were differentially expressed from 14 days to 28 days. The number of up-regulated genes was linearly increased throughout the 28 days of in vitro differentiation, while the number of down-regulated genes reached the plateau from 14 days to 28 days. Most differentially expressed genes were functionally classified into transcriptional regulation, development, extra cellular matrix (ECM),cytoskeleton organization, cytokines, receptors, RNA processing, DNA replication, chromatin assembly, proliferation and apoptosis related genes. While genes encoding ECM proteins were up-regulated, most of the genes related to proliferation, chromatin assembly, DNA replication, RNA processing, and cytoskeleton organization were down-regulated at 14 days. Genes known to be associated with embryo development or transcriptional regulation were differentially expressed mostly after 14 days of differentiation. These results indicate that the altered expression of ECM genes constitute an early event during the spontaneous differentiation, followed by the inhibition of proliferation and lineage specification. Our study might identify useful time-points for applying selective treatments for directed differentiation of mouse ES cells.

The Impact of Autophagy on the Cigarette Smoke Extract-Induced Apoptosis of Bronchial Epithelial Cells

  • Lee, Chang-Hoon;Lee, Kyoung-Hee;Jang, An-Hee;Yoo, Chul-Gyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.80 no.1
    • /
    • pp.83-89
    • /
    • 2017
  • Background: Previous studies report that apoptosis and autophagy are involved in the pathogenesis of emphysema, and macroautophagy is one of the processes regulating the apoptosis pathway. However, few studies have evaluated whether chaperone-mediated autophagy (CMA) contributes to the regulation of apoptosis. In this study, we investigated the impact of autophagy, including both macroautophagy and CMA, on the apoptosis in bronchial epithelial cells. Methods: Cigarette smoke extract (CSE) was injected intratracheally into C57BL/6 mice, and emphysema and apoptosis were evaluated in the lungs. After treatment with CSE, apoptosis, macroautophagy, and CMA were measured in BEAS2-B cells, and the impact of autophagy on the apoptosis was evaluated following knockdown of autophagy-related genes by short interfering RNAs (siRNAs). Results: Intratracheal CSE injection resulted in the development of emphysema and an increase in apoptosis in mice. CSE increased the apoptosis in BEAS2-B cells, and also elevated the expression of proteins related to both macroautophagy and CMA in BEAS2-B cells. The knockdown experiment with siRNAs showed that macroautophagy increases apoptosis in BEAS2-B cells, while CMA suppresses apoptosis. Conclusion: The intratracheal injection of CSE induces pulmonary emphysema and an increase in apoptosis in mice. CSE also induces apoptosis, macroautophagy, and CMA of bronchial epithelial cells. Macroautophagy and CMA regulate apoptosis in opposite directions.

A Case Report of Menorrhagia Related Recurrent Cerebral Infarction (월경과다와 관련된 뇌경색 재발 환자의 임상보고 1례)

  • Kim, Ju-Young;Koo, Beom-Mo;Kim, Sung-Keun;Park, Young-Chul;Yi, Joo-Il;Seo, Yun-Jung
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.21 no.1
    • /
    • pp.257-266
    • /
    • 2008
  • Purpose: These experiments were undertaken to evaluate the effect of Onpoeum on ovarian functions and differential gene expressions related with cell viabilities caspase-3, MAPK and MPG in female mice. Methods: We administered the Onpoeum to 6-week-old female ICR mice for 4, 8, or 12 days. With different concentration of Onpoeum, the female mice were injected PMSG and hCG for ovarian hyperstimulation. The mice divided into 3 different groups for each experiment. We chose the Caspase-3 for cell apoptosis, MAPK and MPG genes for cell viability and DNA repair. Results: In case of 4, 8, 12 day of Onpoeum, we were examined the mean number of total ovulated oocytes and the number of morphologically normal oocytes. We were also examined the embryonic developmental competence in vitro. In addition we were examined the differential expression of cell apoptosis, viability and DNA repair related genes, Caspase-3, MAPK and MPG according to concentration and duration of Onpoeum. From these results showed that the administration of Onpoeum played a role of prevention of cell apoptosis and DNA damages and also increased cell proliferation resulted in ovarian functions. Conclusions: It is suggested that the medication of Onpoeum may have beneficial effect on reproductive functions of female mice via prevention of cell apoptosis and DNA damaging and promotion of cell proliferation.

  • PDF

Anti-Cancer Effects and Apoptosis by Korean Medicinal Herbs

  • Ko Seong Gyu;Jun Chan Yong;Park Chong Hyeong;Bae Hyun Su
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.3
    • /
    • pp.819-825
    • /
    • 2003
  • pharbitis nil and Taraxacum mongolicum are representative herbs that have been used for cancer treatment in Korean traditional medicine. To understand the molecular basis of the antitumor function, we analyzed the effect of these herbs on proliferation and apoptosis of tumor cells using a gastric cancer cell line AGS. Cell counting assay showed that pharbitis nil strongly inhibit cell proliferation Of AGS whereas Taraxacum mongolicum exhibit no detectable effect on cellular growth. [³H]thymidine uptake analysis also demonstrated that DNA replication of AGS is suppressed in a dose-dependent manner by treatment with pharbitis nil. Additionally, tryphan blue exclusion assay showed that Pharbitis nil induce apoptotic cell death of AGS in a dose-dependent. To explore whether anti antiproliferative and/or proapototic property of Pharbitis nil is associated with their effect on gene expression, we performed RT-PCR analysis of cell cycle- and apoptosis-related genes. Interestingly, mRNA expression levels of c-Jun, c-Fos, c-Myc, and Cyclin D1 were markedly reduced by Pharbitis nil. Taraxacum mongolicum also showed inhibitory action on expression of these growth-promoting protooncogene but there effects are less significant, as compared to Pharbitis nil. Furthermore, it was also found that Pharbitis nil activates expression of the p53 tumor suppressor and its downstream effector p21Waf1, which induce G1 cell cycle arrest and apoptosis. Collectively, our data demonstrate that Pharbitis nil induce growth inhibition and apoptosis of human gastric cancer cells and these effects are accompanied with down-and up-regulation of growth-regulating protooncogenes and tumor suppressor genes, respectively. This observation thus suggests that the anticancer effect of Pharbitis nil might be associated with its regulatory capability of tumor-related gene expression.