• Title/Summary/Keyword: antistaticity

Search Result 2, Processing Time 0.019 seconds

Preparation and Properties of Waterborne Poly(urethane-urea) Ionomers -Effect of the Type of Neutralizing Agent-

  • Yang, Jung-Eun;Lee, Young-Hee;Koo, Young-Seok;Jung, Young-Jin;Kim, Han-Do
    • Fibers and Polymers
    • /
    • v.3 no.3
    • /
    • pp.97-102
    • /
    • 2002
  • A series of waterbome poly(urethane-urea) anionomers were prepared from isophorone diisocyanate (IPDI), polycaprolactone diol (PCL), dimethylol propionic acid (DMPA), ethylene diamine (EDA), and triethylamine (TEA), NaOH, or Cu($(COOCH_3)_2$) as neutralizing agent. This study was performed to decide the effect of neutralizing agent type on the particle size viscosity, hydrogen bonding index, adhesive strength, antistaticity, antibacterial and mechanical properties. The particle size of the dispersions decreased in the following order: TEA based samples (T-sample), NaOH based samples (N-sample), and Cu($(COOCH_3)_2$) based sample (C-sample). The viscosity of the dispersions increased in the order of C-sample, N-sample, and T-sample. Metal salt based film samples Of and C-sample) had much higher antistaticity than TEA based sample. By infrared spectroscopy, it was found that the hydrogen bonding index (or fraction) of samples decreased in the order of T-sam-pie, N-sample, and C-sample. The adhesive strength and tensile modulus/strength decreased in the order of T-sample, N-sam-pie, and C-sample. The C-sample had strong antibacterial halo, however, T- and N-samples did not

Preparation and Properties of Waterborne-Polyurethane Coating Materials Containing Conductive Polyaniline

  • Kim, Han-Do;Kwon, Ji-Yun;Kim, Eun-Young
    • Macromolecular Research
    • /
    • v.12 no.3
    • /
    • pp.303-310
    • /
    • 2004
  • We have prepared an aqueous dispersion of poly(aniline-dodecyl benzene sulfonic acid complex) (PANI-DC) that has an intrinsic viscosity (〔η〕) near 1.3 dL/g using aniline as a monomer, dodecyl benzene sulfonic acid(DBSA) as a dopant/emulsifier, and ammonium peroxodisulfate(APS) as an oxidant. We found that the electrical conductivity of a PANI-DC pellet was 0.7 S/cm. A waterborne-polyurethane (WBPU) dispersion, obtained from isophorone diisocyanate/polytetramethylene oxide glycol/dimethylol propionic acid/ethylene diamine/triethylene amine, was used as a matrix polymer. We prepared blend films of WBPU/PANI-DC with variable weight ratios (from 99/1 to 66/34) by solution blending/casting and investigated the effects that the PANI-DC content has on the mechanical and dynamic mechanical properties, hardness, electrical conductivity, and antistaticity of these films. The tensile strength, percentage of elongation, and hardness of WBPU/PANI-DC blend films all decreased markedly upon increasing the PANI-DC content. The antistatic half-life time ($\tau$$\sub$$\frac{1}{2}$/) of pure WBPU film was about 110 s, but we found that those of WBPU/ultrasound-treated PANI-DC blend films decreased exponentially from 1.2 s to 0.1 s to almost 0 s upon increasing the PANI-DC content from 1 wt% to 15 wt% to > 15 wt%, respectively.