Preparation and Properties of Waterborne Poly(urethane-urea) Ionomers -Effect of the Type of Neutralizing Agent-

  • Yang, Jung-Eun (Department of Textile Engineering, Pusan National University) ;
  • Lee, Young-Hee (Department of Textile Engineering, Pusan National University) ;
  • Koo, Young-Seok (Department of Footwear Engineering, Dongseo University) ;
  • Jung, Young-Jin (Department of Fiber Engineering Miryang National University) ;
  • Kim, Han-Do (Department of Textile Engineering, Pusan National University)
  • Published : 2002.09.01

Abstract

A series of waterbome poly(urethane-urea) anionomers were prepared from isophorone diisocyanate (IPDI), polycaprolactone diol (PCL), dimethylol propionic acid (DMPA), ethylene diamine (EDA), and triethylamine (TEA), NaOH, or Cu($(COOCH_3)_2$) as neutralizing agent. This study was performed to decide the effect of neutralizing agent type on the particle size viscosity, hydrogen bonding index, adhesive strength, antistaticity, antibacterial and mechanical properties. The particle size of the dispersions decreased in the following order: TEA based samples (T-sample), NaOH based samples (N-sample), and Cu($(COOCH_3)_2$) based sample (C-sample). The viscosity of the dispersions increased in the order of C-sample, N-sample, and T-sample. Metal salt based film samples Of and C-sample) had much higher antistaticity than TEA based sample. By infrared spectroscopy, it was found that the hydrogen bonding index (or fraction) of samples decreased in the order of T-sam-pie, N-sample, and C-sample. The adhesive strength and tensile modulus/strength decreased in the order of T-sample, N-sam-pie, and C-sample. The C-sample had strong antibacterial halo, however, T- and N-samples did not

Keywords

References

  1. J. A. Miller, K. K. S. Hwang, and S. L. Cooper, J. Macro-mol. Sci. Phys. B22(2), 321 (1983)
  2. J. T. Koberstein and R. S. Stein, J. Polym. Sci., Polym. Phys., 21. 1439 (1983) https://doi.org/10.1002/pol.1983.180210814
  3. A. Rembaum, H. Rile, and R. Somoano, J. Polym. Sci., 138, 457 (1970)
  4. A. Rembaum, S. D. S. Yen, R. F. Randal, and M. Shen, J. Macromol. Sci., A4(3), 715 (1970)
  5. H. A. Salah, K. C. Frisch, H. X. Xiao, and J. A. Mclean, J. Polym. Sci., Polym. Chem., 25, 2127 (1987)
  6. O. Lorenz and H. Hick, Angwe. Macromol. Chem., 72, 115 (1978) https://doi.org/10.1002/apmc.1978.050720110
  7. I. Dimitrievski, T. Malavasic, U. Osdredkar, and I. Vizo-visek, Vestn. Slov. Kem. Drus., 35(3), 253 (1998)
  8. K. K. S. Hwang, C. Z. Yang, and S. L. Cooper, Polym. Eng. Sci., 21, 1027 (1981) https://doi.org/10.1002/pen.760211509
  9. C. Geraldine and A. Eisenberg, Ind. Eng. Chem. Prod. Res. Dev., 20, 271 (1981) https://doi.org/10.1021/i300002a010
  10. Y. Chem and Y. L. Chen, J. Appl. Polym. Sci., 46(3), 435 (1992) https://doi.org/10.1002/app.1992.070460308
  11. O. Lorenz, H. J. August, H. Hick, and F. Triekes, Angwe. Makromol. Chem., 63, 11 (1977) https://doi.org/10.1002/apmc.1977.050630102
  12. D. Dieterich, G. Belle, and H. Schmeiner, Ger. Offen., 2, 735 (1979)
  13. D. J. Hourston, G. D. Williams, R. Satguru, J. C. Padget, and D. Pears, J. Appl. Polym. Sci., 74(3), 556 (1999) https://doi.org/10.1002/(SICI)1097-4628(19991017)74:3<556::AID-APP10>3.0.CO;2-D
  14. M. M. Coleman, D. J. Skrovanek, J. Hu, and P. C. Painter, Macromolecules, 21, 59 (1988) https://doi.org/10.1021/ma00179a014
  15. T. C. Wen and M. S. Wu, Macromolecyles, 32, 2712 (1999) https://doi.org/10.1021/ma9804489
  16. C. S. P. Sung and N. S. Schneider, Macromolecules, 10, 452 (1977) https://doi.org/10.1021/ma60056a041
  17. S. K. Pollack, D. Y. Shen, S. L. Hus, Q. Wang, and H. D. Stidham, Macromolecules, 22, 551 (1989) https://doi.org/10.1021/ma00192a007
  18. R. W. Coleman, G. M. Ester, and S. L. Cooper, Macromol ecules, 3(5), 579 (1970) https://doi.org/10.1021/ma60017a021