Effect of Matrix Viscosity on Clay Dispersion in Preparation of Polymer/Organoclay Nanocomposites

  • Ko, Moon-Bae (Hyperstructured Organic Materials Research Center and School of Chemical Engineering, Seoul National University) ;
  • Jho, Jae-Young (Hyperstructured Organic Materials Research Center and School of Chemical Engineering, Seoul National University) ;
  • Jo, Won-Ho (Hyperstructured Organic Materials Research Center and School of Material Science and Engineering, Seoul National University) ;
  • Lee, Moo-Sung (Department of Textile Engineering and Advanced Materials Research Institute, Chonnam National University)
  • Published : 2002.09.01

Abstract

The viscosity effect of matrix polymer on melt exfoliation behavior of an organoclay in poly($\varepsilon$-caprolactone) (PCL) was investigated. The viscosity of matrix polymer was controlled by changing the molecular weight of poly($\varepsilon$-eaprolactone), the processing temperature, and the rotor speed of a mini-molder. Applied shear stress facilitates the diffusion of polymer chains into the gallery of silicate layers by breaking silicate agglomerates down into smaller primary particles. When the viscosity of PCL is lower, silicate agglomerates are not perfectly broken into smaller primary particles. At higher viscosity, all of silicate agglomerates are broken down into primary particles, and finally into smaller nano-scale building blocks. It was also found that the degree of exfoliation of silicate layers is dependent upon not only the viscosity of matrix but thermodynamic variables.

Keywords

References

  1. 'Polymer-Clay Nanocom-posites', John Wiley and Sons, New York, 2000
  2. J. M. Garces, D. J. Moll, J. Bicerano, R. Fibiger, and D. G McLeod, Adv. Mater., 12, 1835 (2000) https://doi.org/10.1002/1521-4095(200012)12:23<1835::AID-ADMA1835>3.0.CO;2-T
  3. R. A. Vaia, R. K. Teukolsky, and E. P. Giannelis, Chem. Mater., 6, 1017(1994)
  4. R. A. Vaia and E. P. Giannelis, Chem. Mater., 8, 2628(1996) https://doi.org/10.1021/cm960102h
  5. M. Sikka, L. N. Cerini, S. S. Ghosh, and K. I. Winey, J. Potym. Sci., Part B, Polym. Phys., 34, 1443 (1996) https://doi.org/10.1002/(SICI)1099-0488(199606)34:8<1443::AID-POLB7>3.0.CO;2-T
  6. R. A. Vaia, K. D. Jandt, E. J. Kramer, and E. P. Giannelis, Macromolecules, 28, 8080 (1995) https://doi.org/10.1021/ma00128a016
  7. R. A. Vaia and E. P. Giannelis, Macromolecules, 30, 8000(1997) https://doi.org/10.1021/ma9603488
  8. S. W. Kim, W. H. Jo, M. S. Lee, M. B. Ko, and J. Y. Jho, Polymer J.,34,103(2002) https://doi.org/10.1295/polymj.34.103
  9. M. B. Ko, Korea Potymer J., 8,186 (2000)
  10. S. W. Kim, W. H. Jo, M. S. Lee, M. B. Ko, and J. Y. Jho, Polymer, 42, 9837 (2001) https://doi.org/10.1016/S0032-3861(01)00506-7
  11. M. B. Ko, Polymer Bulletin, 45, 183 (2000) https://doi.org/10.1007/PL00006833
  12. Z. Tadmor and C. G. Gogos, 'Principles of Polymer Pro-cessing', John Wiley and Sons, New York, 1979
  13. M. B. Ko, M. Park, J. Kim, and C. R. Choe, Korea Poly-mer J.,8,95(2000)