• Title/Summary/Keyword: antioxidant protein

Search Result 1,577, Processing Time 0.025 seconds

Metallothioneins and Oxidative Stress

  • Beattie, John H.;Trayhurn, Paul
    • 한국영양학회:학술대회논문집
    • /
    • 한국영양학회 2002년도 추계 심포지움초록
    • /
    • pp.1171-1177
    • /
    • 2002
  • The low molecular weight zinc-binding protein metallothionein (MT) contains 32% cysteine and has been shown to efficiently scavenge hydroxyl radicals in vitro. MT expression is induced by oxidative stress and an antioxidant role for this protein has therefore been proposed. This review mainly focuses on the evidence for this role arising from studies using genetically modified animals and cells which either over-or under-express MT. Despite some considerable disparity of results in the literature, reported studies do generally support an antioxidant role. Nevertheless, oxidant stress at non-physiological treatment levels has been the preferred experimental model and there is little information about the role of MT in physiological oxidative stress Although it is presumed that the mechanism by which MT has an antioxidant effect involves oxidation of cysteinal thiols, it is possible that zinc release from MT is in itself an important signalling factor.

  • PDF

Metallothioneins and oxidative stress

  • Beattie, John H.;Trayhurn, Paul
    • 한국영양학회:학술대회논문집
    • /
    • 한국영양학회 2002년도 추계학술대회 및 총회
    • /
    • pp.73-82
    • /
    • 2002
  • The low molecular weight zinc-binding protein metallothionein (U) contains 32% cysteine and has been shown to efficiently scavenge hydroxyl radicals in vitro. MT expression is induced by oxidative stress and an antioxidant role for this protein has therefore been proposed. This review mainly focuses on the evidence for this role arising from studies using genetically modified animals and cells which either over- or under-express MT. Despite some considerable disparity of results in the literature, reported studies do generally support an antioxidant role. Nevertheless, oxidant stress at non-physiological treatment levels has been the preferred experimental model and there is little information about the role of MT in physiological oxidative stress. Although it is presumed that the mechanism by which MT has an antioxidant effect involves oxidation of cysteinal thiols, it is possible that zinc release from MT is in itself an important signalling factor.

  • PDF

Hepatoprotective Effect and Antioxidant Role of Caesalpinia bonducella on Paracetamol-induced Hepatic Damage in Rats

  • Gupta, Malaya;Mazumder, Upal Kanti;Kumar, Ramanathan Sambath
    • Natural Product Sciences
    • /
    • 제9권3호
    • /
    • pp.186-191
    • /
    • 2003
  • The hepatoprotective effect of methanol extract of leaves of Caesalpinia bonducella was studied by means of paracetamol induced liver damage in rats. The degree of protection was measured by using biochemical parameters such as serum transaminase (SGPT and SGOT), alkaline phosphatase (ALP), bilirubin, and total protein. Further, the effects of the extract on lipid peroxidation (LPO), glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) were estimated. The methanol extract of C. bonducella (MECB) (50,100 and 200 mg/kg) produced significant (P<0.01) hepatoprotective effect by decreasing the activity of serum enzymes, bilirubin, and lipid peroxidation, while it significantly increased increased the levels of GSH, SOD, CAT, and protein in a dose dependent manner. The effects of MECB were comparable to that of standard drug Silymarin. However, at a lower dose (25 mg/kg) it could not restore the deleterious effect produced by paracetamol. The results indicate that Caesalpinia bonducella had antioxidant and hepatoprotective effects.

Expression of Thiol-Dependent Protector Protein from Yeast Enhances the Resistance of Escherichia coli to Menadione

  • Park, Jeen-Woo;Ahn, Soo-Mi;Kim, Eun-Ju;Lee, Soo-Min
    • BMB Reports
    • /
    • 제29권6호
    • /
    • pp.513-518
    • /
    • 1996
  • A soluble protein from Saccharomyces cerevisiae specifically provides protection against a thiolcontaining oxidation system but not against an oxidation system without thiol. This 25-kDa protein was thus named thiol-dependent protector protein (TPP). The role of TPP in the cellular defense against oxidative stress was investigated in Escherichia coli containing an expression vector with a yeast genomic DNA fragment that encodes TPP (strain YP) and a mutant in which the catalytically essential amino acid in the active site of TPP (Cys-47) has been replaced with alanine by site-directed mutagenesis (strain YPC47A). There was a distinct difference between these two strains in regard to viability, modulation of activities of superoxide dismutase and catalase, and the oxidative damage of DNA upon exposure to menadione. These results suggest that TPP may play a direct role in the cellular defense against oxidative stress by functioning as an antioxidant protein.

  • PDF

Supplementation of Pork Patties with Bovine Plasma Protein Hydrolysates Augments Antioxidant Properties and Improves Quality

  • Seo, Hyun-Woo;Seo, Jin-Kyu;Yang, Han-Sul
    • 한국축산식품학회지
    • /
    • 제36권2호
    • /
    • pp.198-205
    • /
    • 2016
  • This study investigated the effects of bovine plasma protein (PP) hydrolysates on the antioxidant and quality properties of pork patties during storage. Pork patties were divided into 4 groups: without butylated hydroxytoluene (BHT) and PP hydrolysates (control), 0.02% BHT (T1), 1% PP hydrolysates (T2), and 2% PP hydrolysates (T3). Pork patty supplemented with PP hydrolysates had higher pH values and lower weight loss during cooking than the control patties. Results showed that lightness and hardness both decreased upon the addition of PP hydrolysates. All samples containing BHT and PP hydrolysates had reduced TBARS and peroxide values during storage. In particular, 2% PP hydrolysates were more effective in delaying lipid oxidation than were the other treatments. It was concluded that treatment with 2% PP hydrolysates can enhance the acceptance of pork patty.

Anti-aging skin and antioxidant assays of protein hydrolysates obtained from salted shrimp fermented with Salinivibrio cibaria BAO-01

  • Anh, Pham Thi Ngoc;Le, Bao;Yang, Seung Hwan
    • Journal of Applied Biological Chemistry
    • /
    • 제63권3호
    • /
    • pp.203-209
    • /
    • 2020
  • This study focused on the preparation and characterization of anti-wrinkle peptides from the salted and fermented shrimp (Acetes japonicus) inoculated with Salinivibrio cibaria BAO-01 (SFSC). The results showed the proximate composition of SFSC to be 9.23% water, 75.32% protein, 0.23% fat, and 13.3 mg/g ash. Interestingly, the S. cibaria fermentation significantly increased the amount of methionine, leucine, and arginine. The in vitro antioxidant activity was assayed by the diphenylpicrylhydrazyl method and its IC50 value was found to be 43.02±2.84 ㎍/mL. It was observed to inhibit the activity of elastase, tyrosinase, collagenase, and hyaluronidase. The IC50 values of SFSC were 182.75±12.38 ㎍/mL for anti-elastase activity, 186.78±7.95 ㎍/mL for anti-tyrosinase activity, 444.4±34.81 ㎍/mL for anti-collagenase activity, and 1447.95±28.92 ㎍/mL for anti-hyaluronidase activity. These results suggest that salted and fermented shrimp has strong potential for the development of nutricosmetic products.

Protective Effect of a 43 kD Protein from the Leaves of the Herb, Cajanus indicus L on Chloroform Induced Hepatic-disorder

  • Ghosh, Ayantika;Sarkar, Kasturi;Sil, Parames C.
    • BMB Reports
    • /
    • 제39권2호
    • /
    • pp.197-207
    • /
    • 2006
  • Cajanus indicus is a herb with medicinal properties and is traditionally used to treat various forms of liver disorders. Present study aimed to evaluate the effect of a 43 kD protein isolated from the leaves of this herb against chloroform induced hepatotoxicity. Male albino mice were intraperitoneally treated with 2mg/kg body weight of the protein for 5 days followed by oral application of chloroform (0.75ml/kg body weight) for 2 days. Different biochemical parameters related to physiology and pathophysiology of liver, such as, serum glutamate pyruvate transaminase and alkaline phosphatase were determined in the murine sera under various experimental conditions. Direct antioxidant role of the protein was also determined from its reaction with Diphenyl picryl hydraxyl radical, superoxide radical and hydrogen peroxide. To find out the mode of action of this protein against chloroform induced liver damage, levels of antioxidant enzymes catalase, superoxide dismutase and glutathione-S-transferase were measured from liver homogenates. Peroxidation of membrane lipids both in vivo and in vitro were also measured as malonaldialdehyde. Finally, histopathological analyses were done from liver sections of control, toxin treated and protein pre- and post-treated (along with the toxin) mice. Levels of serum glutamate pyruvate transaminase and alkaline phosphatase, which showed an elevation in chloroform induced hepatic damage, were brought down near to the normal levels with the protein pretreatment. On the contrary, the levels of anti-oxidant enzymes such as catalase, superoxide dismutase and glutathione-S-transferase that had gone down in mice orally fed with chloroform were significantly elevated in protein pretreated ones. Besides, chloroform induced lipid peroxidation was effectively reduced by protein treatment both in vivo and in vitro. In cell free system the protein effectively quenched diphenyl picryl hydrazyl radical and superoxide radical, though it could not catalyse the breakdown of hydrogen peroxide. Post treatment with the protein for 3 days after 2 days of chloroform administration showed similar results. Histopathological studies indicated that chloroform induced extensive tissue damage was less severe in the mice livers treated with the 43 kD protein prior and post to the toxin administration. Results from all these data suggest that the protein possesses both preventive and curative role against chloroform induced hepatotoxicity and probably acts by an anti-oxidative defense mechanism.

붉나무의 부위 별 항산화 및 항염증 활성 (Antioxidant and anti-inflammatory activity of parts of Rhus javanica L.)

  • 최지수;한상돈;장태원;이승현;박재호
    • Journal of Applied Biological Chemistry
    • /
    • 제62권2호
    • /
    • pp.195-202
    • /
    • 2019
  • 붉나무(Rhus javanica L.)는 동아시아에서 주로 분포하는 옻나무과의 식물이다. 붉나무의 잎, 줄기, 뿌리 에틸아세테이트 분획물의 항산화 활성 및 항염증 활성을 확인하였다. 붉나무 뿌리 에틸아세테이트 분획물의 DPPH 및 ABTS radical 소거활성이 가장 효과적이었으며, 총 페놀 화합물의 함량은 62.9, 70.3, 73.9 mg/g으로 나타났다. HPLC/PDA 분석을 통해 gallic acid를 동정 및 정량하였다. LPS로 자극시킨 RAW264.7 세포에서 항염증 활성을 확인하였다. iNOS의 발현 억제를 통한 NO 생성을 억제하였으며, 이러한 결과들을 통해 gallic acid를 포함하고 있는 붉나무는 염증 질환의 효과적인 경감 및 치료제로 개발될 수 있는 가능성을 보였으며, 붉나무 뿌리의 에틸아세테이트 분획물의 활성이 잎과 줄기 에틸아세테이트 분획물의 활성보다 뛰어났다.

Antioxidant effect of flavonoid, myricetin with GSH, vitamin E, vitamin C on B16F10, murine melanoma cell

  • Yu, Ji-Sun;Kim, An-Keun
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.144.2-145
    • /
    • 2003
  • Reactive Oxygen Species (ROS) are produced during normal cellular function. ROS are very transient species due to their high chemical reactivity that leads to lipid peroxidation and oxidation of some enzyme, massive protein oxidation and degradation. Under normal conditions, antioxidant are substances that either directly or indirectly protect cells against adverse effects of ROS. Several biologically important compounds have been reported to have antioxidant functions. These incluce vitamin C, vitamin E, GSH, flavonoids. superoxidee dismutase(SOD), glutathione peroxidase(GPX) and catalase(CAT). (omitted)

  • PDF

Antioxidant Activities and Total Phenolic Contents of Three Legumes

  • Lee, Kyung Jun;Kim, Ga-Hee;Lee, Gi-An;Lee, Jung-Ro;Cho, Gyu-Taek;Ma, Kyung-Ho;Lee, Sookyeong
    • 한국자원식물학회지
    • /
    • 제34권6호
    • /
    • pp.527-535
    • /
    • 2021
  • Legumes have been important components of the human diet. They contain not only protein, starch, and dietary fiber, but also various phenolic compounds such as flavonoids and phenolic acids. The importance of phenolic compounds to human health is well known due to their antioxidant activities. In this study, three legumes (adzuki beans, common beans, and black soybeans) frequently cultivated in Korea were evaluated for their total phenolic content (TPC) and antioxidant activities using DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2'-azinobis (3-ethylbenzothiazoline 6-sulfonate)), and FRAP (ferric reducing antioxidant potential) assays. In addition, correlations between agricultural traits and antioxidant activities of these three legumes were analyzed. Antioxidant activities assessed by DPPH, ABTS, and FRAP assays and TPC showed wide variations among legumes types and accessions. Among the three legumes, adzuki beans showed higher TPC and antioxidant activity than the other two legumes. In correlation analysis, seed size showed negative correlations with antioxidant activities and TPC. In principal component analysis and hierarchical clustering analysis, each of the three legumes was clearly separate. Results of this study can be used as basic information for developing functional materials for each legume. They can also help us understand the overall antioxidant activity of the three legumes.