• Title/Summary/Keyword: antimicrobial potential

Search Result 653, Processing Time 0.023 seconds

Identification of Essential Genes in Streptococcus Pneumoniae by Allelic Replacement Mutagenesis

  • Song, Jae-Hoon;Ko, Kwan Soo;Lee, Ji-Young;Baek, Jin Yang;Oh, Won Sup;Yoon, Ha Sik;Jeong, Jin-Yong;Chun, Jongsik
    • Molecules and Cells
    • /
    • v.19 no.3
    • /
    • pp.365-374
    • /
    • 2005
  • To find potential targets of novel antimicrobial agents, we identified essential genes of Streptococcus pneumoniae using comparative genomics and allelic replacement mutagenesis. We compared the genome of S. pneumoniae R6 with those of Bacillus subtilis, Enterococcus faecalis, Escherichia coli, and Staphylococcus aureus, and selected 693 candidate target genes with > 40% amino acid sequence identity to the corresponding genes in at least two of the other species. The 693 genes were disrupted and 133 were found to be essential for growth. Of these, 32 encoded proteins of unknown function, and we were able to identify orthologues of 22 of these genes by genomic comparisons. The experimental method used in this study is easy to perform, rapid and efficient for identifying essential genes of bacterial pathogens.

Fungicidal Effect of Prenylated Flavonol, Papyriflavonol A, Isolated from Broussonetia papyrifera (L.) Vent. Against Candida albicans

  • Sohn, Ho-Yong;Kwon, Chong-Suk;Son, Kun-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.10
    • /
    • pp.1397-1402
    • /
    • 2010
  • Papyriflavonol A (PapA), a prenylated flavonoid [5,7,3',4'-tetrahydroxy-6,5'-di-(${\gamma},{\gamma}$-dimethylallyl)-flavonol], was isolated from the root barks of Broussonetia papyrifera. Our previous study showed that PapA has a broad-spectrum antimicrobial activity against pathogenic bacteria and fungi. In this study, the mode of action of PapA against Candida albicans was investigated to evaluate PapA as an antifungal agent. The minimal inhibitory concentration (MIC) values were 10~25 ${\mu}g/ml$ for C. albicans and Saccharomyces cerevisiae, Gram-negative bacteria (Escherichia coli and Salmonella typhimurium), and Gram-positive bacteria (Staphylococcus epidermidis and Staphylococcus aureus). The kinetics of cell growth inhibition, scanning electron microscopy, and measurement of plasma membrane florescence anisotrophy revealed that the antifungal activity of PapA against C. albicans and S. cerevisiae is mediated by its ability to disrupt the cell membrane integrity. Compared with amphotericin B, a cell-membrane-disrupting polyene antibiotic, the hemolytic toxicity of PapA was negligible. At 10~25 ${\mu}g/ml$ of MIC levels for the tested strains, the hemolysis ratio of human erythrocytes was less than 5%. Our results suggest that PapA could be a therapeutic fungicidal agent having potential as a broad spectrum antimicrobial agent.

Screening of Essential Genes in Staphylococcus aureus N315 Using Comparative Genomics and Allelic Replacement Mutagenesis

  • Ko Kwan-Soo;Lee Ji-Young;Song Jae-Hoon;Baek Jin-Yang;Oh Won-Sup;Chun Jong-Sik;Yoon Ha-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.623-632
    • /
    • 2006
  • To find potential targets of novel antimicrobial agents, we identified essential genes of Staphylococcus aureus N315 by using comparative genomics and allele replacement mutagenesis. By comparing the genome of S. aureus N315 with those of Bacillus subtilis, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, and Streptococcus pneumoniae, a total of 481 candidate target genes with similar amino acid sequences with at least three other species by >40% sequence identity were selected. of 481 disrupted candidate genes, 122 genes were identified as essential genes for growth of S. aureus N315. Of these, 51 essential genes were those not identified in any bacterial species, and 24 genes encode proteins of unknown function. Seventeen genes were determined as non-essential although they were identified as essential genes in other strain of S. aureus and other species. We found no significant difference among essential genes between Streptococcus pneumoniae and S. aureus with regard to cellular function.

Chemical Warfare Agent Simulant Decontamination of Chitosan Treated Cotton Fabric (키토산 처리 면직물의 군사용 화학 작용제 모사체 분해 연구)

  • Kwon, Woong;Han, Minwoo;Jeong, Euigyung
    • Textile Coloration and Finishing
    • /
    • v.32 no.1
    • /
    • pp.51-56
    • /
    • 2020
  • This study aims to pursue the multi-functional textile finishing method to detoxify chemical warfare agent by simply treating the well-known antimicrobial agent, chitosan, to cotton fabric. For this purpose, DFP(diisopropylfluorophosphate) was sele cted as a chemical warfare agent simulant and cotton fabric was treated with 0.5, 1.0, and 2wt% chitosan solution in 1wt% acetic acid. DFP decontamination properties of the chitosan treated cotton fabrics were evaluated and compared with the untreated cotton fabric. The chitosan treated cotton fabrics showed better DFP decontamination than the untreated cotton. Decontamination properties of the chitosan treated cotton fabrics improved with the increased chitosan solution used. Especially, the cotton fabrics treated with 2wt% chitosan solution showed 5 times more DFP decontamina tion than the untreated cotton fabrics. This suggested that the chitosan treated fabric has potential to be used as a material for protective clothing with chemical warfare agent detoxifying and antimicrobial properties.

Bioprospecting of Novel and Bioactive Metabolites from Endophytic Fungi Isolated from Rubber Tree Ficus elastica Leaves

  • Ding, Zhuang;Tao, Tao;Wang, Lili;Zhao, Yanna;Huang, Huiming;Zhang, Demeng;Liu, Min;Wang, Zhengping;Han, Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.5
    • /
    • pp.731-738
    • /
    • 2019
  • Endophytic fungi are an important component of plant microbiota, and have the excellent capacity for producing a broad variety of bioactive metabolites. These bioactive metabolites not only affect the survival of the host plant, but also provide valuable lead compounds for novel drug discovery. In this study, forty-two endophytic filamentous fungi were isolated from Ficus elastica leaves, and further identified as seven individual taxa by ITS-rDNA sequencing. The antimicrobial activity of these endophytic fungi was evaluated against five pathogenic microorganisms. Two strains, Fes1711 (Penicillium funiculosum) and Fes1712 (Trichoderma harzianum), displayed broad-spectrum bioactivities. Our following study emphasizes the isolation, identification and bioactivity testing of chemical metabolites produced by T. harzianum Fes1712. Two new isocoumarin derivatives (1 and 2), together with three known compounds (3-5) were isolated, and their structures were elucidated using NMR and MS. Compounds 1 and 2 exhibited inhibitory activity against Escherichia coli. Our findings reveal that endophytic fungi from the rubber tree F. elastica leaves exhibit unique characteristics and are potential producers of novel natural bioactive products.

Lactobacillus plantarum G72 Showing Production of Folate and Short-chain Fatty Acids

  • Jang, Hye Ji;Lee, Na-Kyoung;Paik, Hyun-Dog
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.1
    • /
    • pp.18-23
    • /
    • 2021
  • The aim of this study was to determine the production of folate, short chain fatty acids (SCFAs), and antimicrobial activity exhibited by Lactobacillus plantarum G72 for potential dietary application in pregnant women. L. plantarum G72 has been reported to possess characteristic activities and functionality including β-galactosidase activity and antioxidant activities. L. plantarum G72 showed antibacterial activity against pathogenic bacteria (Listeria monocytogenes ATCC 15313, Salmonella typhimurium P99, Escherichia coli ATCC 25922, and Staphylococcus aureus KCCM 11335) using a modified method, and formation of the largest inhibition zone was observed against S. aureus KCCM 11335 (12.0-17.0 mm). The adherence of four food-borne pathogenic bacteria to HT-29 cells was inhibited by L. plantarum G72 (0.13 to 0.92 log CFU/ml). The most considerable inhibition of adherence to HT-29 cells was observed by using L. plantarum G72 against S. typhimurim P99. Additionally, folate production by L. plantarum G72 was 50.1 ng/ml, and L. plantarum G72 produced relatively more lactic acid (11,176.73 mg/kg) than acetic, propionic, or butyric acids. Therefore, the results of this study suggest that L. plantarum G72 may serve as a multifunctional food additive in the health industry.

Anti-bacterial properties and safety evaluation of disinfectant using Dendropanax morbifera (Hwangchil) extract for passenger cabin in the subway (지하철 객실 적용을 위한 황칠 추출물 소독제의 항균특성 및 안전성 평가)

  • Bui, Vu Khac Hoang;Park, Jae-Seok;Lee, Young-Chul
    • Particle and aerosol research
    • /
    • v.18 no.2
    • /
    • pp.37-50
    • /
    • 2022
  • Due to the syndrome coronavirus 2 (SARS-CoV-2) pandemic, the subway passenger cabin should be continuously sterilized. However, a disinfectant such as chlorine is toxic and can lead to different issues to human health. In this paper, we introduced a novel disinfectant based on natural product (Dendropanax morbifera extract). Via ultra-high performance liquid chromatography - mass spectrometer (UHPLC-MS), different compounds from Dendropanax morbifera extract showed antivirus potentials. Antimicrobial experiments confirmed that the air-disinfectant containing Dendropanax morbifera can eliminate harmful microorganisms including Gram (-), Gram (+), and yeast within 5 mins. The as-prepared air-disinfectant also showed high antivirus activity against H1N1, HRV, and EV71. Deodorization test also indicates that the as-prepared air-disinfectant can lower the harmful gas such as ammonia and trimethylamine in the atmosphere. To evaluate the potential of air-disinfectant containing Dendropanax morbifera in practical applications, different safety tests including acute oral toxicity, acute skin irritation, and eye irritation were conducted. Results showed that the as-prepared disinfectant did not negatively affect tested animals during these safety investigations.

Isolation and Characterization of Halophilic Kocuria salsicia Strains from Cheese Brine

  • Youn, Hye-Young;Seo, Kun-Ho
    • Food Science of Animal Resources
    • /
    • v.42 no.2
    • /
    • pp.252-265
    • /
    • 2022
  • Kocuria salsicia can survive in extreme environments and cause infections, including catheter-related bacteremia, in humans. Here, we investigated and evaluated the characteristics of nine K. salsicia strains (KS1-KS9) isolated from cheese brine from a farmstead cheese-manufacturing plant in Korea from June to December, 2020. Staphylococcus aureus American Type Culture Collection (ATCC) 29213 was used as a positive control in the growth curve analysis and biofilm-formation assays. All K. salsicia isolates showed growth at 15% salt concentration and temperatures of 15℃, 25℃, 30℃, 37℃, and 42℃. KS6 and KS8 showed growth at 5℃, suggesting that they are potential psychrotrophs. In the biofilm-formation analysis via crystal violet staining, KS6 exhibited the highest biofilm-forming ability at various temperatures and media [phosphate buffered saline, nutrient broth (NB), and NB containing 15% sodium chloride]. At 25℃ and 30℃, KS3, KS6, and KS8 showed higher biofilm-forming ability than S. aureus ATCC 29213. The antimicrobial resistance of the isolates was evaluated using the VITEK® 2 system; most isolates were resistant to marbofloxacin and nitrofurantoin (both 9/9, 100%), followed by enrofloxacin (7/9, 77.8%). Five of the nine isolates (5/9, 55.6%) showed multidrug resistance. Our study reports the abilities of K. salsicia to grow in the presence of high salt concentrations and at relatively low temperatures, along with its multidrug resistance and tendency to form biofilms.

Anti-Hemolytic and Antimicrobial Effects against Multidrug-Resistant Bacteria of Enterococcus faecalis Isolated from Human Breast Milk (모유에서 분리한 Enterococcus faecalis의 다제내성 균에 대한 항용혈 및 항균 효과)

  • Yi, Eun-Ji;Lee, Jeong-eun;Jo, So-Yeon;Kim, Soo-bin;Yu, Du-na;Kook, Moochang;Kim, Ae Jung
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.4
    • /
    • pp.519-527
    • /
    • 2021
  • In this study, the hemolysis of Enterococcus faecalis BMSE-HMP strains, isolated from human breast milk, was investigated, and the anti-hemolytic and antimicrobial effects on multidrug-resistant (MDR) bacteria were investigated. The enzyme activity of E. faecalis BMSE-HMP 4 strains was measured, and it was found that the activities of esterase and esterase lipase were the highest. In addition, no hemolytic reaction was observed in any of the isolates. Subsequently, the anti-hemolytic activity against MDR strains causing hemolysis was evaluated. E. faecalis BMSE-HMP002 had the highest anti-hemolytic activity against Staphylococcus aureus CCARM 3855 at 75.71 ± 10.00%. The anti-hemolytic activity against Escherichia coli DC 2 CCARM 0238 and Pseudomonas aeruginosa CCARM 0223 showed that the activity of BMSE-HMP001 was highest at 76.92 ± 2.99% and 87.93 ± 1.93%, respectively. Examination of the antimicrobial effects against the MDR bacteria Staphylococcus spp., Escherichia spp., Pseudomonas spp., Salmonella spp., Klebsiella spp., Enterobacter spp., and E. faecalis BMSE-HMP strains showed antimicrobial effects against both gram-positive and gram-negative strains. Breastfeeding delivers enterococci into the intestinal tract of newborns by lactation, and its usefulness is attracting attention as it has been reported that enterococci have a potential effect on neonatal immune development. In this study, the hemolytic and antimicrobial effects of E. faecalis BMSE-HMP strains on MDR bacteria were investigated, to confirm their potential as useful lactic acid bacteria. Additional studies on the antibiotic resistance and toxicity of the E. faecalis BMSE-HMP strains, isolated in this study, are necessary to prove it safe for use.

Antibacterial Activity of Coffea robusta Leaf Extract against Foodborne Pathogens

  • Yosboonruang, Atchariya;Ontawong, Atcharaporn;Thapmamang, Jadsada;Duangjai, Acharaporn
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.8
    • /
    • pp.1003-1010
    • /
    • 2022
  • The purpose of this study was to examine the phytochemical compounds and antibacterial activity of Coffea robusta leaf extract (RLE). The results indicated that chlorogenic acid (CGA) is a major component of RLE. The minimum inhibitory concentrations (MICs) of RLE against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Salmonella Typhimurium were 6.25, 12.5, 12.5, and 12.5 mg/ml, respectively. RLE effectively damages the bacterial cell membrane integrity, as indicated by the high amounts of proteins and nucleic acids released from the bacteria, and disrupts bacterial cell membrane potential and permeability, as revealed via fluorescence analysis. Cytotoxicity testing showed that RLE is slightly toxic toward HepG2 cells at high concentration but exhibited no toxicity toward Caco2 cells. The results from the present study suggest that RLE has excellent potential applicability as an antimicrobial in the food industry.