Screening of Essential Genes in Staphylococcus aureus N315 Using Comparative Genomics and Allelic Replacement Mutagenesis

  • Ko Kwan-Soo (Asian-Pacific Research Foundation for Infectious Diseases (ARFID), Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Lee Ji-Young (Asian-Pacific Research Foundation for Infectious Diseases (ARFID)) ;
  • Song Jae-Hoon (Asian-Pacific Research Foundation for Infectious Diseases (ARFID), Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Baek Jin-Yang (Asian-Pacific Research Foundation for Infectious Diseases (ARFID)) ;
  • Oh Won-Sup (Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Chun Jong-Sik (Department of Biological Sciences, Seoul National University) ;
  • Yoon Ha-Sik (LG Life Sciences, Inc.)
  • Published : 2006.04.01

Abstract

To find potential targets of novel antimicrobial agents, we identified essential genes of Staphylococcus aureus N315 by using comparative genomics and allele replacement mutagenesis. By comparing the genome of S. aureus N315 with those of Bacillus subtilis, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, and Streptococcus pneumoniae, a total of 481 candidate target genes with similar amino acid sequences with at least three other species by >40% sequence identity were selected. of 481 disrupted candidate genes, 122 genes were identified as essential genes for growth of S. aureus N315. Of these, 51 essential genes were those not identified in any bacterial species, and 24 genes encode proteins of unknown function. Seventeen genes were determined as non-essential although they were identified as essential genes in other strain of S. aureus and other species. We found no significant difference among essential genes between Streptococcus pneumoniae and S. aureus with regard to cellular function.

Keywords

References

  1. Mills, S. D. 2003. The role of genomics in antimicrobial discovery. J. Antimicrob. Chemother. 51: 749-752 https://doi.org/10.1093/jac/dkg178
  2. Sakharkar, K. R., M. K. Sakharkar, and V. T. K. Chow. 2004. A novel genomics approach for the identification of drug targets in pathogens, with special reference to Pseudomonas aeruginosa. In Silico Biol. 4: 355-360
  3. Jordan, I. K., I. B. Rogozin, Y. I. Wolf, and E. V. Koonin. 2002. Essential genes are more evolutionarily conserved than are nonessential genes in bacteria. Genome Res. 12: 962-968 https://doi.org/10.1101/gr.87702
  4. Kim, Y. C., C. S. Kim, B. H. Cho, and A. J. Anderson. 2004. Major Fe-superoxide dimutase (FeSOD) activity in Pseudomonas putida is essential for survival under conditions of oxidative stress during microbial challenge and nutrient limitation. J. Microbiol. Biotechnol. 14: 859- 862
  5. Kobayashi, K., S. D. Ehrlich, A. Albertini, G. Amati, K. K. Andersen, M. Arnaud, K. Asai, S. Ashikaga, S. Aymerich, P. Bessieres, F. Boland, S. C. Brignell, S. Bron, K. Bunai, J. Chapuis, L. C. Christiansen, A. Danchin, M. Debarbouille, E. Dervyn, E. Deuerling, K. Devine, S. K. Devine, O. Dreesen, J. Errington, S. Fillinger, S. J. Foster, Y. Fujita, A. Galizzi, R. Gardan, C. Eschevins, T. Fukushima, K. Haga, C. R. Harwood, M. Hecker, D. Hosoya, M. F. Hullo, H. Kakeshita, D. Karamata, Y. Kasahara, F. Kawamura, K. Koga, P. Koski, R. Kuwana, D. Imamura, M. Ishimaru, S. Ishikawa, I. Ishio, D. Le Coq, A. Masson, C. Mauel, R. Meima, R. P. Mellado, A. Moir, S. Moriya, E. Nagakawa, H. Nanamiya, S. Nakai, P. Nygaard, M. Ogura, T. Ohanan, M. O'Reilly, M. O'Rourke, Z. Pragai, H. M. Pooley, G. Rapoport, J. P. Rawlins, L. A. Rivas, C. Rivolta, A. Sadaie, Y. Sadaie, M. Sarvas, T. Sato, H. H. Saxild, E. Scanlan, W. Schumann, J. F. Seegers, J. Sekiguchi, A. Sekowska, S. J. Seror, M. Simon, P. Stragier, R. Studer, H. Takamatsu, T. Tanaka, M. Takeuchi, H. B. Thomaides, V. Vagner, J. M. van Dijl, K. Watabe, A. Wipat, H. Yamamoto, M. Yamamoto, Y. Yamamoto, K. Yamane, K. Yata, K. Yoshida, H. Yoshikawa, U. Zuber, and N. Ogasawara. 2003. Essential Bacillus subtilis genes. Proc. Natl. Acad. Sci. USA 100: 4678-4683
  6. Arigoni, F., F. Talabot, M. Peitsch, M. D. Degerton, E. Meldrum, E. Allet, R. Fish, T. Jamotte, M. L. Curchod, and H. Loferer. 1998. A genome-based approach for the identification of essential bacterial genes. Nat. Biotechnol. 16: 851-858 https://doi.org/10.1038/nbt0998-851
  7. Zhang, R., Z. Y. Ou, and C. T. Zhang. 2004. DEG: A database of essential genes. Nucleic Acids Res. 32: D271- D272 https://doi.org/10.1093/nar/gkh024
  8. Forsyth, R. A., R. J. Haselbeck, K. L. Ohlsen, R. T. Yamamoto, H. Xu, J. d. Trawick, D. Wall, L. Wang, V. Brown-Driver, J. M. Froelich, P. King, M. McCarthy, C. Malone, B. Misiner, D. Robbins, Z. Tan, Z. Y. Zhu, G. Carr, D. A. Mosca, C. Zamudio, J. G. Foulkes, and J. W. Zyskind. 2002. A genome-wide strategy for the identification of essential genes in Staphylococcus aureus. Mol. Microbiol. 43: 1387- 1400 https://doi.org/10.1046/j.1365-2958.2002.02832.x
  9. Ji, Y., B. Zhang, S. F. Van Horn, P. Warren, G. Woodnutt, M. K. R. Burnham, and M. Rosenberg. 2001. Identification of critical staphylococcal genes using conditional phenotypes generated by antisense RNA. Science 293: 2266-2269 https://doi.org/10.1126/science.1063566
  10. Jung, H. J., K. S. Choi, and D. G. Lee. 2005. Synergistic killing effect of synthetic peptide P20 and cefotaxime on methicillin-resistant nosocomial isolates of Staphylococcus aureus. J. Microbiol. Biotechnol. 15: 1039-1046
  11. Kuroda, M., T. Ohta, I. Uchiyama, T. Baba, H. Yuzawa, I. Kobayashi, L. Cui, A. Oguchi, K. Aoki, Y. Nagai, J. Lian, T. Ito, M. Kanamori, H. Matsumaru, A. Maruyama, H. Murakami, A. Hosoyama, Y. Mizutani-Ui, N. K. Takahashi, T. Sawano, R. Inoue, C. Kaito, K. Sekimizu, H. Hirakawa, S. Kuhara, S. Goto, J. Yabuzaki, M. Kanehisa, A. Yamashita, K. Oshima, K. Furuya, C. Yoshino, T. Shiba, M. Hattori, N. Ogasawara, H. Hayashi, and K. Hiramatsu. 2001. Whole genome sequencing of methicillin-resistant Staphylococcus aureus. Lancet 357: 1225-1240 https://doi.org/10.1016/S0140-6736(00)04403-2
  12. Song, J.-H., K. S. Ko, J.-Y. Lee, J. Y. Baek, W. S. Oh, H. S. Yoon, J.-Y. Jeong, and J. Chun. 2005. Identification of essential genes in Streptococcus pneumoniae using allelic replacement mutagenesis. Mol. Cells 19: 365-374
  13. Heo, Y.-J., K. S. Ko, J.-H. Song, and Y.-H. Cho. 2005. Profiling pyocins and competitive growth advantages of various Pseudomonas aeruginosa strains. J. Microbiol. Biotechnol. 15: 1368-1376
  14. Lee J. C. 1995. Electrotransformation of Staphylococci, p. 209. In Nickoloff, J. A. (ed.), Methods in Molecular Biology, 47. Humana Press, Totowa, NJ
  15. Chang, S. and S. H. Cohen. 1979. High frequency transformation of Bacillus subtilis protoplasts by plasmid DNA. Mol. Gen. Genet. 168: 111-115 https://doi.org/10.1007/BF00267940
  16. Thanassi, J. A., S. L. Hartman-Neumann, T. J. Dougherty, B. A. Dougherty, and M. J. Pucci. 2002. Identification of 113 conserved essential genes using a high-throughput gene disruption system in Streptococcus pneumoniae. Nucleic Acids Res. 30: 3152-3162 https://doi.org/10.1093/nar/gkf418
  17. Akerley, B. J., E. J. Rubin, V. L. Novick, K. Amaya, N. Judson, and J. J. Mekalanos. 2002. A genome-scale analysis for identification of genes required for growth or survival of Haemophilus influenzae. Proc. Natl. Acad. Sci. USA 99: 966-971
  18. Hutchison, C. A., S. N. Pterson, S. R. Gill, R. T. Cline, O. White, C. M. Fraser, H. O. Smith, and J. C. Venter. 1999. Global transposon mutagenesis and a minimal Mycoplasma genome. Science 286: 2165-2169 https://doi.org/10.1126/science.286.5447.2165
  19. Chalker, A. F., H. W. Minehart, N. J. Hughes, K. K. Koretke, M. A. Lonetto, K. K. Brinkman, P. V. Warren, A. Lupas, M. J. Stanhope, J. R. Brown, and P. S. Hoffman. 2001. Systematic identification of selective essential genes in Helicobacter pylori by genome prioritization and allelic replacement mutagenesis. J. Bacteriol. 183: 1259-1268 https://doi.org/10.1128/JB.183.4.1259-1268.2001
  20. Sassetti, C. M., D. H. Boyd, and E. J. Rubin. 2001. Comprehensive identification of conditionally essential genes in mycobacteria. Proc. Natl. Acad. Sci. USA 98: 12712- 12717
  21. Koh, R., L.-L. Goh, and T.-S. Sim. 2004. Engineering recombinant Streptomyces coelicolor malate synthase with improved thermal properties by directed mutagensis. J. Microbiol. Biotechnol. 14: 547-552
  22. Bruccoleri, R. E., T. J. Dougherty, and D. B. Davison. 1998. Concordance analysis of microbial genomes. Nucleic Acid Res. 16: 4482-4486
  23. Zalacain, M., S. Biswas, K. A. Ingraham, J. Ambrad, A. Bryant, A. F. Chalker, S. Iordanescu, J. Fan, F. Fan, R. D. Lunsford, K. O'Dwyer, L. M. Palmer, C. So, D. Sylvester, C. Volker, P. Warren, D. McDevitt, J. R. Brown, D. J. Holmes, and M. K. Burnham. 2004. A global approach to identify novel broad-spectrum antibacterial targets among proteins of unknown function. J. Mol. Microbiol. Biotechnol. 6: 109- 126
  24. Tatusov, R. L., E. V. Koonin, and D. J. Lipman. 1997. A genomic perspective on protein families. Science 278: 631- 637 https://doi.org/10.1126/science.278.5338.631
  25. Uziel, O., I. Borovok, R. Schreiber, G. Cohen, and Y. Aharonowitz. 2004. Transcriptional regulation of the Staphylococcus aureus thioredoxin and thioredoxin reductase genes in response to oxygen and disulfide stress. J. Bacteriol. 186: 326-334 https://doi.org/10.1128/JB.186.2.326-334.2004
  26. Hardy, G. G., A. D. Magee, C. L. Ventura, M. J. Caimano, and J. Yother. 2001. Essential role for cellular phosphoglucomutase in virulence of type 3 Streptococcus pneumoniae. Infect. Immun. 69: 2309-2317 https://doi.org/10.1128/IAI.69.4.2309-2317.2001
  27. Wu, S., H. de Lencastre, A. Sali, and A. Tomasz. 1996. A phosphoglucomutase-like gene essential for the optimal expression of methicilloin resistance in Staphylococcus aureus: Molecular cloning and DNA sequencing. Microb. Drug Resist. 2: 277-286 https://doi.org/10.1089/mdr.1996.2.277
  28. Senior, A. E., S. Nadanaciva, and J. Weber. 2002. The molecular mechanism of ATP synthesis by $F_1F_0$-ATP synthase. Biochim. Biophys. Acta 1553: 188-211 https://doi.org/10.1016/S0005-2728(02)00185-8
  29. Tran, S. L. and G. M. Cook. 2005. The $F_1F_0$-ATP synthase of Mycobacterium smegmatis is essential for growth. J. Bacteriol. 187: 5023-5028 https://doi.org/10.1128/JB.187.14.5023-5028.2005