• Title/Summary/Keyword: antimicrobial compounds

Search Result 619, Processing Time 0.029 seconds

Isolation and Identification of Antimicrobial Compounds against Helicobacter pylori from Rosemary (Rosmarinus officinalis L.) Extracts (로즈마리(Rosmarinus officinalis L.) 추출물로부터 Helicobacter pylori에 대한 항균물질 분리 및 동정)

  • Yoon, So-Jung;Kim, Jin-Sung;Jo, Bun-Sung;Kim, Jeung-Hoan;Lee, Sun-Ho;Ahn, Bong-Jeun;Cho, Young-Je
    • Journal of Applied Biological Chemistry
    • /
    • v.54 no.3
    • /
    • pp.159-165
    • /
    • 2011
  • Rosmarinus officinalis extracts had a significant antimicrobial activity against Helicobacter pyori. Total phenolic contents and inhibition zone of rosemary extracts were estimated to be 25.7 mg/g and 14 mm at $200{\mu}g/mL$ of phenolic contents, respectively. The Sephadex LH-20 and MCI-gel CHP-20 column chromatographic separations for the phenolic extracts from R. officinalis leaves led to isolation of five acids, whose structures were determined as protocatechuic acid (A), coumaric acid (B), caffeic acid (C), chlorogenic acid (D), and rosmarinic acid (E), from interpretation of spectroscopic data including nagative fast atom bombardment (FAB)-mass, $^1H$-NMR, $^{13}C$-NMR, and IR. All isolated compounds were tested for antimicrobial activity against H. pyori. The purified single compound showed less antimicrobial activity against H. pylori than the mixed purified compounds, which generate A+B, A+E, C+D, C+E (each $200{\mu}g/disc$) excellent as large clear zone by synergy effect. These results indicate rosemary extracts are preventive agents against H. pyori.

Comparison of Antioxidant and Antimicrobial Activities of Bracken (Pteridium aquilinum Kuhn) according to Cooking Methods (조리방법에 따른 고사리의 항산화활성 및 항균활성 비교)

  • Park, Cho-Hee;Kim, Kyoung-Hee;Yook, Hong-Sun
    • The Korean Journal of Food And Nutrition
    • /
    • v.27 no.3
    • /
    • pp.348-357
    • /
    • 2014
  • This study was carried out to evaluate the yield of extract, antioxidant compounds (total phenolic and total flavonoid), antioxidant (DPPH assay, ABTS assay and reducing power), and antimicrobial activities of bracken (Pteridium aquilinum Kuhn), according to cooking methods (non-blanched, blanched and seasoned). The yield of seasoned bracken extracts showed a high value of (4.59%) followed by non-blanched bracken and blanched bracken with 2.69% and 0.30%, respectively. In the total polyphenol and flavonoid contents, seasoned bracken extracts showed higher antioxidant compounds ($96.11{\pm}0.34mg\;GAE$/100 g RW, $20.90{\pm}0.mg\;CE$/100 g RW) than non-blanched and blanched. The total antioxidant activities (DPPH assay, ABTS assay and reducing power) were shown to be in the order of seasoned bracken > non-blanched bracken > blanched bracken. In the antimicrobial activities, non-blanched bracken extracts showed antimicrobial activity against B. cereus, B. subtilis, E. cloacae, E. coli, S. enterica, and P. aeruginosa except for S. aureus. The non-blanched bracken extracts (5 and 10 mg/disc) especially showed strong antimicrobial activity against P. aeruginosa ($10.00{\pm}0.71$ and $10.25{\pm}0.35mm$). The inhibition zone diameter from the extracts of blanched bracken and seasoned bracken was not detected. Many seasonings added in the process of cooking can increase the antioxidant capacities. The overall results of this study demonstrate that the cooked bracken with seasoning would be the most efficient way of ingesting antioxidant compounds.

Purification of Antimicrobial Compounds and Antimicrobial Effects of Schima wallichii subsp. liukiuensis against Candida sp. (Schima wallichii subsp. liukiuensis의 Candida종에 대한 항균효과 및 항균물질의 분리정제)

  • Choi, Mynug-Suk;Shin, Kuem;Yang, Jae-Kyung;Ahan, Jin-Kwon;Kwon, Oh-Woong;Lee, Yi-Young
    • KSBB Journal
    • /
    • v.16 no.3
    • /
    • pp.269-273
    • /
    • 2001
  • To develop natural antimicrobial substances from Theaceae, Schima wallichii subsp. liukiuensis was selected from 218 woody plants, and antimicrobial compounds against bacteria, fungi, and yeast were isolated. The antimicrobial activity of ethanol extracts proved higher than those of other organic solvents. The antimicrobial activity of S. liukiuensis extract showed no differences in sesonal variation, but, that of plant part was high in bark at autumn. An antimicrobial substance was isolated from the extract of Schima using column chromatography packed with silica gel and sephadex LH-20, and then a purified antimicrobial substance (Compound I) was obtained using HPLC analysis. The Compound I in the analysis of UV, IR, and GC-MS presumed a triterpene or steroidal saponin, ${\alpha}$-sitisterol as aglycon combined three sugars. The minimal inhibitory concentration (MIC) of the Compound I against a bacteria, fungi, and yeast were 1.25 g/L, 5.0 g/L, and 0.040 g/L, respectively. This is much lower than the MIC of hinokitiol, an natural antimicrobial compound used commercially, which suggests that Compound I could be developed as a natural preservative and pharmaceuticals.

  • PDF

Synthesis and Antimicrobial Activity of Some New 1-Alkyl-2-alkylthio-1,2,4-triazolobenzimidazole Derivatives

  • Mohamed, Bahaa Gamal;Hussein, Mostafa Ahmed;Abdel-Alim, Abdel-Alim Mohamed;Hashem, Mohammed
    • Archives of Pharmacal Research
    • /
    • v.29 no.1
    • /
    • pp.26-33
    • /
    • 2006
  • Some new derivatives of 1,2,4-triazolo[2,3-a]benzimidazoles were synthesized through the reaction of 1,2-diaminobenzimidazole with carbon disulfide. The resulting 1,2,4-triazolo-[2,3a]benzimidazole-2-thione intermediate was reacted with one equivalent of alkyl halides to give the corresponding 2-alkylthio derivatives, which were further alkylated through the reaction with another one equivalent of different alkyl halides to afford the target compounds; 1-alkyl-2alkylthio-1,2,4-traizolo[2,3-a]benzimidazoles. On the other hand, the 1,2-disubstituted derivatives with two identical alkyl substituents were prepared by the reaction of 1,2,4-triazolo[2,3-a]benzimidazole-2-thione with two equivalents of the alkyl halides. The structures of the new compounds were assigned by spectral and elemental methods of analyses. The synthesized compounds were tested for their antibacterial and antifungal activities. Most of the tested compounds proved comparable results with those of ampicillin and fluconazole reference drugs. The study indicated that, the antibacterial as well as the antifungal activities of the test compounds were improved with increase in the bulkiness of the introduced alkyl groups. Also, some active antibacterial compounds were tested for their antimycobacterial activity. All the test compounds showed equipotent antitubercular activity as that of INH as a reference drug.

Antimicrobial Activities of Eight Compounds Purified from the Roots of Polygala tenuifolia Willdenow and the Aerial Bulbils of Dioscorea batatas Decene (원지와 영여자로부터 분리한 8종 화합물의 항균효과)

  • Chin, Hwi-Seung;Son, Rak-Ho;Lee, Yong-Hwa;Ham, Ah-Rom;Mar, Woong-Chon;Kim, Won-Ki;Nam, Kung-Woo
    • YAKHAK HOEJI
    • /
    • v.54 no.2
    • /
    • pp.106-111
    • /
    • 2010
  • The chemical structures of eight compounds purified from two plants (Polygala tenuifolia Willdenow and Dioscorea batatas Decene) were determined and their anti-microbial activity against three microbial strains (Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans) was tested. The three micro organisms were cultured in 96-well plates or Petri dishes without (control) or with the eight compounds added at concentrations of 100 to 0.01 ${\mu}M$ (wt/vol). The growth of the microorganisms in the medium was examined after a 24-h incubation. The inhibitory effect of each compound on the growth of the microorganisms was calculated from the optical density measured at 595 nm, turbidity, and size of the inhibition zone around the treated paper disc. The minimum inhiitory concentration (MIC) of compounds 4 to 7 against S. aureus was 0.08, 0.05, 1.3 and 0.02 ${\mu}M$, respectively, and 0.09, 0.1, 0.2 and 100 ${\mu}M$ against C. albicans. The $IC_{50}$ (50% inhibition) values of compounds 5 and 6 were 3.1 and 6.4 ${\mu}M$ against S. aureus, respectively, and 10 and 2.4 ${\mu}M$ against C. albicans. Therefore, compounds 4 to 6 were the most potent anti-microbial agents among the eight compounds tested.

Antimicrobial Activity of Methanol Extract from Soibirhym (Portulace oleracea) against Food Spoilage or Foodborne Disease Microorganisms and the Composition of the Extract (식품부패 및 식중독성 미생물에 대한 쇠비름(Portulace oleracea) 메탄올 추출물의 항균활성과 성분분석)

  • 임미경;김미라
    • Korean journal of food and cookery science
    • /
    • v.17 no.6
    • /
    • pp.565-570
    • /
    • 2001
  • Soibirhym(Portulace oleracea) was extracted by methanol and its antimicrobial activities against food spoilage or foodborne disease microorganisms were investigated by the paper disc method. The microorganisms used in this experiment included 5 species of bacteria(Escherichia coli, Pseudomonas aeruginosa, Salmonella typhimurium, Klebsiella Pneumoniae, Staphylococcus aureus) and 3 species of fungi(Fusarium solani, Aspergillus flavius, Penicillium citreonigrum). Soibirhym showed high antimicrobial activites against P. citreonigrum, P. aeruginosa and K. pneumoniae. Minimum inhibitory concentrations(MICs) on S. aureus, P. citreonigrum and K. pneumoniae were 200, 200 and 250 mg/㎖, respectively. In the methanol extracts from Soibirhym, 147 kinds of compound were separated by GC/MS. The extraction yields of phenolics, furans, alcohols, acids and esters, ketones, aldehydes, and miscellaneous compounds were 7.43%, 6.13%, 2.20%, 41.06%, 9.21%, 0.15% and 1.08%, respectively. Some antimicrobial compounds such as 2,3-dihydro-benzofuran, 4-hydroxy-3-methoxy-benzoic acid, 4-hydroxy benzeneethanol were detected in the methanol extract.

  • PDF

Marine Algae and Their Potential Application as Antimicrobial Agents

  • Charway, Grace N.A.;Yenumula, Padmini;Kim, Young-Mog
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.3
    • /
    • pp.151-156
    • /
    • 2018
  • The world is becoming overwhelmed with widespread diseases as antibiotic resistance increases at an alarming rate. Hence, there is a demanding need for the discovery and development of new antimicrobial drugs. The ocean is gifted with many organisms like phytoplankton, algae, sponges, cnidarians, bryozoans, mollusk, tunicates and echinoderms, which are known to produce a wide variety of bioactive secondary metabolites with pharmacological properties. Many new therapeutic drugs have emerged from marine invertebrates, although the large algal community is yet to be explored. The bioactivity possessing secondary metabolites of marine algae include polyphenols, phlorotannins, alkaloids, halogenated compounds, sulfated polysaccharides, agar, carrageenan, proteoglycans, alginate, laminaran, rhamnan sulfate, galactosylglycerol, and fucoidan. These metabolites have been found to have great antimicrobial activities against many human aliments. Studies show that the algal community represents about 9% of biomedical compounds obtained from the sea. This review looks at the evolution of drugs from the ocean, with a special emphasis on the antimicrobial activities of marine algae.

Antimicrobial Activity of Methanol Extract from Rheum tanguticum against Food Hazardous Microorganisms and the Composition of the Extract (식품위해성 미생물에 대한 대황(Rheum tanguticum) 메탄올 추출물의 항균활성 및 성분분석)

  • 임미경;김미라
    • Korean journal of food and cookery science
    • /
    • v.19 no.4
    • /
    • pp.470-476
    • /
    • 2003
  • Daehwang (Rheum tanguticum) was extracted by methanol, and the antimicrobial activities of the extract, against some food hazardous microorganisms, were investigated by the paper disc method. The minimum inhibitory concentration (MIC) of the extract against the microorganisms was determined, and the extract components were analyzed by GC/MS. The Daehwang extract showed the strongest antimicrobial effect against P. aeruginosa. The MICs on S. aureus, P. aeruginosa and S. typhimurium were 250, 300 and 300mg/$m\ell$, respectively. In the methanol extracts from Daehwang, 120 different compounds were separated, with the extraction yield of the phenolic compounds being relatively high (29.85%). Substances with antimicrobial activity, such as 2-methoxy-phenol and 4-vinyl-2-methoxy-phenol were detected in the study.

A Facile Greener Assisted Protocol for the Synthesis of Some New 4-aryl-(5-chloro-3-Methyl-1-phenyl-1H-Pyrazol-4-yl)-4,5-dihydroisoxazol-3-yl) Derivatives and their in vitro Antimicrobial Activity

  • Shaikh, Baseer M.;Konda, Shankaraiah G.;Yemul, Omprakash S.;Dawane, Bhaskar S.
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.2
    • /
    • pp.246-250
    • /
    • 2012
  • An efficient access, single step and environmentally benign synthesis of a new series of pyrazole containing isoxazolines derivatives were prepared by the condensation of chalcones bearing pyrazole moiety with hydroxyl amine hydrochloride in basic condition by using polyethylene glycol-400 (PEG) as a greener reaction solvent. The advantages of the present methodology are mild reaction condition and avoidance of volatile organic solvent. Furthermore, these newly synthesized compounds were screened for their antimicrobial activity against various pathogens like Escherichia coli (MTCC 2939), Salmonella typhi (MTCC 98), Staphylococcus aureus (MTCC 96), Bacillus subtilis (MTCC 441), Aspergillus niger (MTCC 281), Aspergillus flavus (MTCC 2501), Penicillium chrsogenum (MTCC 160) and Fusarium moniliformae (MTCC 156). Especially compound containing the hydroxyl group in C2-position and presence of halo (I, Br and Cl) groups as substituents at $C_3$ and $C_5$ position on the benzene nucleus showed the higher activity. Furthermore, compounds bearing methyl groups in combination with I and Br which enhanced the activity.

Preparation of Self-detoxifying Textile for Removal of Chemical Warfare Agents (군사목적의 유해화학물질 제거용 보호복 소재 제조를 위한 섬유 후가공 처리)

  • Kim, Hanil;Choi, Ik-Sung;Park, Seong-Woo;Han, Yo-han;Kim, Sung-Hun;Park, Hyun-Bae;Min, Mun-hong
    • Textile Coloration and Finishing
    • /
    • v.31 no.1
    • /
    • pp.33-41
    • /
    • 2019
  • In this report, nano-sized catalysts were introduced onto fabric surface to eliminate toxic chemicals assisted by physical adsorption. For chemical removal of toxic compounds, a series of zirconium-containing catalysts were synthesized and treated on fabric to catalyze the hydrolysis and oxidation of target molecules. Antimicrobial was also introduced for the research purpose to prove the compatibility of as-synthesized catalysts with other solutions. Zirconium ligated with hydroxyl group and MOF(Metal-Organic Frameworks) were exploited as catalyst for removal of toxic compounds, while zinc complex was used for an antimicrobial to culminate in a chemical shield. Once fabrics were functionalized, fabrics were washed 2 or 5 times for a washing durability test. The amount of catalyst in textile were measured by ICP-MS and weight increasing ratio of fabrics.