• 제목/요약/키워드: antifungal microorganism

검색결과 57건 처리시간 0.021초

카네이션의 시설재배에서 길항성 세균을 이용한 Fusarium Wilt 의 생물학적 방제 (Biological Control of Fusarium Wilt of Carnation Plants by Antagonistic Microorganism in Greenhouse)

  • 조정일;조자용
    • 한국유기농업학회지
    • /
    • 제12권2호
    • /
    • pp.183-196
    • /
    • 2004
  • This study was carried out to screen and select the effects of antifungal bacterial strains which inhibit the growth of plant pathogen, Fusarium oxysporum(fusarium wilt) occurred in carnation plants in greenhouse. We isolated an effective bacterial strains and investigated into the antifungal activity of the antagonistic microorganism and it's identification. Twenty bacterial strains which strongly inhibited Fusarium oxysporum were isolated from roots of carnation plants and the soil in greenhouse, and the best antifungal bacteria designated as C121, was finally selected. Antagonistic bacterial strain, C121 was identified to be the genus Bacillus sp. based on the morphological, biochemical and cultural characterizations. The Bacillus sp. C121 showed 58.1% of antifungal activity against the growth of Fusarium oxysporum. By the bacterialization of the cultural broth and the heat bacterialization culture filtrate of it, Bacillus sp. C121 was shown 92.1% and 21.0% of antifungal activity, respectively.

  • PDF

오이의 온실재배에서 발생하는 위조병의 미생물학적 제어 (Biological Control of Fusarium Wilt by Antagonistic Microorganism in Greenhouse Grown Cucumber Plants)

  • 조정일;조자용
    • 한국유기농업학회지
    • /
    • 제12권1호
    • /
    • pp.101-114
    • /
    • 2004
  • This study was carried out to clarify the effects of antagonistic microorganism, Bacillus sp. JC181 isolated from the greenhouse soil grown cucumber plants on the growth inhibition of plant pathogen, fusarium wilt (Fusarium oxysporum) occurred in cucumber plants in greenhouse. Antagonistic bacterial strains were isolated and were investigated into the antifungal activity of the antagonistic microorganism against fusarium wilt. Screened fourteen bacterial strains which strongly inhibited F. oxysporum were isolated from thc greenhouse soil grown cucumber plants, and the best antagonistic bacterial strain designated as JC181, was finally selected. Antagonistic bacterial strain JC181 was identified to be the genus Bacillus sp. based on the morphological and biochemical characterization. Bacillus sp. JC181 showed 58.2% of antifungal activity against the plant pathogen growth of F. oxysporum. By the bacterialization of culture broth and heated filtrates of culture broth, Bacterial strain, Bacillus sp. JC181. showed 91.2% and 260% of antifungal activity against F. oxysporum, respectivrly.

  • PDF

온실재배 토마토에서 발생하는 위조병의 미생물학적 제어 (Biological Control of Fusarium Wilt of Tomato Plants by Antagonistic Microorganism in Greenhouse)

  • 조정일;조자용
    • 한국유기농업학회지
    • /
    • 제11권4호
    • /
    • pp.61-74
    • /
    • 2003
  • This study was conducted to screen the antagonistic bacteria which inhibit the growth of plant pathogen, fusarium wilt(Fusarium oxysporum) occurred in tomato plants in greenhouse. We isolated an effective bacterial strains and investigated into the antifungal activity of the antagonistic microorganism and it’s identification. Ten bacterial strains which strongly inhibited Fusarium oxysporum were isolated from the nature, and the best antagonistic bacterial strain designated as KC175, was selected. The antagonistic strain KC175 was identified to be the genus Bacillus sp. based on the morphological and biochemical characterization. The Bacillus sp. KC175 showed 58.2% of antifungal activity against the growth of Fusarium oxysporum. By the bacterialization of the culture broth and the heat bacterialization culture filtrate of it, Bacillus sp. KC175 showed 91% and 18% of antifungal activity, respectively.

  • PDF

Purification and Charaterization of Antifungal Chitinase from Indigenous Antagonistic Microorganism Serratia sp. 3095

  • Lee, Eun-Tag;Kim, Sang-Dal
    • Journal of Applied Biological Chemistry
    • /
    • 제42권1호
    • /
    • pp.7-11
    • /
    • 1999
  • An extracellular chitinase of the selected strong antifungal microorganism, Serratia sp. 3095, was purified by salting out, affinity adsorption, Sepadex G-100 gel fitration, Sepadex G-75 gel fitration and DEAE Sepadex A-50 chromatography. The molecular weight of the purified chitinase was estimated to be 62,000 dalton by SDS-PAGE. Optimal pH and temperature of the chitinase were pH 7.5 and 45, respectively. The enzyme retained more than 80% of the activity between pH 5.5 and pH 10.5, and below $50^{\circ}C$ but was unstable above $60^{\circ}C$, below pH 5.0. The activity of the chitinase was inhibited about 60% by $Sn^{2+}$, 40% by $Hg^{2+}$ and $Ag^+$, 70% by AHA, 40% by iodoacetate, 35% by thiourea and p-CMB, but stabilized by SDS. $K_m$ value of the purified chitinase was 3.68 mg/ml for colloidal chitin. The chitinase from Serratia sp. 3095 showed antifungal activity to Fusariurm solani.

  • PDF

Antifungal Effect of Amentoflavone derived from Selaginella tamariscina

  • Jung, Hyun-Jun;Sung, Woo-Sang;Yeo, Soo-Hwan;Kim, Hyun-Soo;Lee, In-Seon;Woo, Eun-Rhan;Lee, Dong-Gun
    • Archives of Pharmacal Research
    • /
    • 제29권9호
    • /
    • pp.746-751
    • /
    • 2006
  • Amentoflavone is a plant biflavonoid that was isolated from an ethyl acetate extract of the whole plant of Selaginella tamariscina (Beauv.) spring. 1D and 2D NMR spectroscopy including DEPT, HMQC, and HMBC were used to determine its structure. Amentoflavone exhibited potent antifungal activity against several pathogenic fungal strains but had a very low hemolytic effect on human erythrocytes. In particular, amentoflavone induced the accumulation of intracellular trehalose on C. albicans as a stress response to the drug, and disrupted the dimorphic transition that forms pseudo-hyphae during pathogenesis. In conclusion, amentoflavone has great potential to be a lead compound for the development of antifungal agents.

길항성 근원 세균이 딸기 시설재배에서 발생하는 잿빛곰팡이병의 생물학적 제어에 미치는 영향 (Effects of Antagonistic Rhizobacteria on the Biological Control of Gray Mold in Greenhouse Grown Strawberry Plants)

  • 조정일;조자용;양승렬
    • 한국유기농업학회지
    • /
    • 제13권2호
    • /
    • pp.161-173
    • /
    • 2005
  • This study was carried out to clarify the effects of antifungal bacterial strains isolated from the greenhouse soil grown strawberry plants on the growth inhibition of plant pathogen, gray mold (Botrytis cinerea) infected in strawberry plants in Damyang and Jangheung districts. Antagonistic bacterial strains were isolated and investigated into the antagonistic activity against gray mold. Screened ten bacterial strains which strongly inhibited Botrytis cinerea were isolated from the greenhouse grown strawberry plants, and the best antifungal microorganism designated as SB 143 was finally selected. Antifungal bacterial strain SB 143 was identified to be the genus Bacillus sp. based on the morphological and biochemical characterization. Bacillus sp. SB 143 showed 59.4% of antifungal activity against Botrytis cinerea. By the bacterialization of culture broth and heated filtrates of culture broth, Bacillus sp. SB 143 showed 93.1% and 32.1% of antagonistic activity against Botrytis cinerea.

  • PDF

Damage to the Cytoplasmic Membrane and Cell Death Caused by Lycopene in Candida albicans

  • Sung, Woo-Sang;Lee, In-Seon;Lee, Dong-Gun
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권11호
    • /
    • pp.1797-1804
    • /
    • 2007
  • Lycopene, an acyclic carotenoid found in tomatoes (Lycopersicon esculentum) and a number off fruits, has shown various biological properties, but its antifungal effects remain poorly understood. The current study investigated the antifungal activity of lycopene and its mode of action. Lycopene showed potent antifungal effects toward pathogenic fungi, tested in an energy-independent manner, with low hemolytic effects against human erythrocytes. To confirm the antifungal effects of lycopene, its effects on the dimorphism of Candida albicans induced by fetal bovine serum (FBS), which plays a key role in the pathogenesis of a host invasion, were investigated. The results showed that lycopene exerted potent antifungal activity on the serum-induced mycelia of C. albicans. To understand the antifungal mode of action of lycopene, the action of lycopene against fungal cell membranes was examined by FACScan analysis and glucose and trehalose-release test. The results indicated that lycopene caused significant membrane damage and inhibited the normal budding process, resulting from the destruction of membrane integrity. The present study indicates that lycopene has considerable antifungal activity, deserving further investigation for clinical applications.

Antimicrobial Effect of Furaneol Against Human Pathogenic Bacteria and Fungi

  • Sung Woo-Sang;Jung Hyun-Jun;Lee In-Seon;Kim Hyun-Soo;Lee Dong-Gun
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권3호
    • /
    • pp.349-354
    • /
    • 2006
  • Furaneol, a key aroma compound found in strawberry, pineapple, and processed foodstuffs, has been known to possess various biological activities on animal models. In this study, the antimicrobial effects of furaneol against human pathogenic microorganisms were investigated. The results indicated that furaneol displayed a broad spectrum of antimicrobial activities against Gram-positive and Gram-negative bacteria and fungi without hemolytic activity on human erythrocyte cells. To confirm the antifungal activity of furaneol, we examined the accumulation of intracellular trehalose as a stress response marker on toxic agents and its effect on dimorphic transition of Candida albicans. The results demonstrated that furaneol induced significant accumulation of intracellular trehalose and exerted its antifungal effect by disrupting serum-induced mycelial forms. These results suggest that furaneol could be a therapeutic agent having a broad spectrum of antimicrobial activity on human pathogenic microorganisms.

항균제에 의한 기저귀 발진을 일으키는 Candida albicans 억제 효과 (The Effect of Antibacterial Agent for Candida albicans Inhibition of Diaper Rash)

  • 박준호;윤병호;이명구;조욱기
    • 펄프종이기술
    • /
    • 제33권3호
    • /
    • pp.69-74
    • /
    • 2001
  • Diaper rash is found on the skin inside of babys diaper area. Most diaper rashes are caused by prolonged contact with the moisture, germs, and ammonia of the stool and urine. Some diaper rashes are caused by fungi infection such as candida albicans and Preteus vulgaris. In this study, Candida albicans was used as a test microorganism and experiment was carried out to inhibit diaper rash. Handsheets were treated with chitosan oligosaccharide, bamboo extractives, as well as mixture of monolaurin as an emulsifier and bamboo extractives. Both shake flask method and halo test were applied in order to examine the antimicrobial activity of each sample. It was found from both results of the halo test and shake flask method that handsheets treated with chitisan oligosaccharide or bamboo extractives showed antimicrobial property. In the treatment of bamboo extractives without emulsifier, no distinct difference in antimicrobial effect was found between bamboo branch and bamboo leaves extractives. In case of mixture of bamboo extractives and emulsifier, the result also suggested that bamboo branch showed better syngergistic effect than bamboo leaves. Both chitosan oligosaccharide and bamboo extractive can be used as antifungal agents against Candida albicans for making diaper.

  • PDF

Screening and Identification of an Antifungal Pseudomonas sp. That Suppresses Balloon Flower Root Rot Caused by Rhizoctonia solani

  • Ryu, Jae-San;Lee, Sang-Dae;Lee, Young-Han;Lee, Seong-Tae;Kim, Dong-Kil;Cho, Soo-Jeong;Park, Sang-Ryeol;Bae, Dong-Won;Park, Ki-Hun;Yun, Han-Dae
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권4호
    • /
    • pp.435-440
    • /
    • 2000
  • A pathogenic fungus causing balloon flower root rot (Platycodon grandiflorum) was isolated from naturally infected roots. The microbial characteristics of the isolated microorganism were similar to those of Rhizoctonia solani. About 500 bacterial species from field soils were screened for a biological agent against the above-mentioned putative pathogen, and several bacteria with the antifungal activity were isolated. Among them, the isolated JS2 was identified as Pseudomonas aeruginosa. This strain showed a broad spectrum of antifungal activity potentially. When the antifungal substance was purified from a broth culture of JS2, it was identified as 2,4-diacetylphloroglucinol (Phl).

  • PDF