• Title/Summary/Keyword: antifungal compound

Search Result 227, Processing Time 0.024 seconds

Potential of the Volatile-Producing Fungus Nodulisporium sp. CF016 for the Control of Postharvest Diseases of Apple

  • Park, Myung-Soo;Ahn, Ji-Ye;Choi, Gyung-Ja;Choi, Yong-Ho;Jang, Kyoung-Soo;Kim, Jin-Cheol
    • The Plant Pathology Journal
    • /
    • v.26 no.3
    • /
    • pp.253-259
    • /
    • 2010
  • In vitro and in vivo mycofumigation effects of the volatileproducing fungus Nodulisporium sp. CF016 isolated from stem of Cinnamomum loureirii and the role of its volatile compounds were investigated against phytopathogenic fungi. The volatile compounds produced by Nodulisporium sp. CF016 inhibited and killed a wide range of plant and storage pathogens including to Pythium ultimum, Rhizoctonia solani, Fusarium oxysporum, Phytophthora capsici, Sclerotinia sclerotiorum, Colletotrichum coccodes, Magnaporthe oryzae, Alternaria panax, Botrytis cinerea and Penicillium expansum. Mycofumigation with wheat bran-rice hull cultures of Nodulisporium sp. CF016 showed in vivo antifungal activity against gray mold caused by B. cinerea and blue mold caused by P. expansum of apple. The most abundant volatile compound produced by Nodulisporium sp. CF016 was $\beta$-elemene followed by 1-methyl-1,4-cyclohexadiene, $\beta$-selinene and $\alpha$-selinene. Nodulisporium sp. CF016 could be an attractive mycofumigant in controlling postharvest diseases of various fruits including apple.

Proteomic Analysis of a Global Regulator GacS Sensor Kinase in the Rhizobacterium, Pseudomonas chlororaphis O6

  • Kim, Chul Hong;Kim, Yong Hwan;Anderson, Anne J.;Kim, Young Cheol
    • The Plant Pathology Journal
    • /
    • v.30 no.2
    • /
    • pp.220-227
    • /
    • 2014
  • The GacS/GacA system in the root colonizer Pseudomonas chlororaphis O6 is a key regulator of many traits relevant to the biocontrol function of this bacterium. Proteomic analysis revealed 12 proteins were down-regulated in a gacS mutant of P. chlororaphis O6. These GacS-regulated proteins functioned in combating oxidative stress, cell signaling, biosynthesis of secondary metabolism, and secretion. The extent of regulation was shown by real-time RT-PCR to vary between the genes. Mutants of P. chlororaphis O6 were generated in two GacS-regulated genes, trpE, encoding a protein involved in tryptophan synthesis, and prnA, required for conversion of tryptophan to the antimicrobial compound, pyrrolitrin. Failure of the trpE mutant to induce systemic resistance in tobacco against a foliar pathogen causing soft rot, Pectobacterium carotovorum SCCI, correlated with reduced colonization of root surfaces implying an inadequate supply of tryptophan to support growth. Although colonization was not affected by mutation in the prnA gene, induction of systemic resistance was reduced, suggesting that pyrrolnitrin was an activator of plant resistance as well as an antifungal agent. Study of mutants in the other GacS-regulated proteins will indicate further the features required for biocontrol-activity in this rhizobacterium.

Optical Resolution of Hexanol Derivatives, Synthesis of Optically Active Systhane from Them and Its Biological Activity (Hexanol 유도체의 순수이성질체로의 분할, 이를 이용한 광학활성 시스탄의 합성 및 생물학적 활성)

  • Im, Dai-Sig;Lee, So-Ha;Cheong, Chan-Seong
    • Applied Biological Chemistry
    • /
    • v.46 no.3
    • /
    • pp.240-245
    • /
    • 2003
  • $({\pm})-2-(4-Chlorophenyl)-2-cyano-2-phenyl-1-hexanol$ (2) and acetate ester (3) were resolved by various lipases. (R) and (S)-systhane were synthesized by the resolved compound 2. The antifungal screening of (R), (S)-systhane and $({\pm})-systhane$ against wheat leaf rust and barley powdery mildew gave activity over 92% in concentration of 2 ppm, but (R)- and (S)-systhane were not more active than $({\pm})-systhane$.

Production, Purification, and Characterization of Antifungal Metabolite from Pseudomonas aeruginosa SD12, a New Strain Obtained from Tannery Waste Polluted Soil

  • Dharni, Seema;Alam, Mansoor;Kalani, Komal;Abdul-Khaliq, Abdul-Khaliq;Samad, Abdul;Srivastava, Santosh Kumar;Patra, Dharani Dhar
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.5
    • /
    • pp.674-683
    • /
    • 2012
  • A new strain, SD12, was isolated from tannery waste polluted soil and identified as Pseudomonas aeruginosa on the basis of phenotypic traits and by comparison of 16S rRNA sequences. This bacterium exhibited broad-spectrum antagonistic activity against phytopathogenic fungi. The strain produced phosphatases, cellulases, proteases, pectinases, and HCN and also retained its ability to produce hydroxamate-type siderophore. A bioactive metabolite was isolated from P. aeruginosa SD12 and was characterized as 1-hydroxyphenazine ((1-OH-PHZ) by nuclear magnetic resonance (NMR) spectral analysis. The strain was used as a biocontrol agent against root rot and wilt disease of pyrethrum caused by Rhizoctonia solani. The stain is also reported to increase the growth and biomass of Plantago ovata. The purified compound, 1-hydroxyphenazine, also showed broad-spectrum antagonistic activity towards a range of phytopathogenic fungi, which is the first report of its kind.

Synthesis and Antimicrobial Activities of Some New Nitroimidazole Derivatives

  • Benkli, Kadriye;Karaburun, Ahmet-Cagrl;Gundogdu-Karaburun, Nalan;Demirayak, Seref;Guven, Klymet
    • Archives of Pharmacal Research
    • /
    • v.26 no.10
    • /
    • pp.773-777
    • /
    • 2003
  • In this study, some new nitroimidazole derivatives were obtained from 2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethylamine dihydrochloride (4) and 1-(2-bromoethyl)-2-methyl-5-nitroimidazole (5), which were prepared using metronidazole. Compound 4 was reacted with arylisothiocyanates (6) to obtain 1-[2-(2-methyl-5-nitroimidazol-1-yl)ethyl]-3-arylthioureas (7) and the latter with $\alpha$-bromoacetophenones (8) to give -3-[2-(2-methyl-5-nitroimidazol-1-yl)ethyl]-2-arylimino-4-aryl-4-thiazolines (9). Also 1-[2-(2-methyl-5-nitroimidazol-1-yl)ethyl]-2-phenyl-4-arylideneimidazolin-5-ones (11) were prepared by reaction of 4 with 2-phenyl-4-arylidene-5-oxazolones (10). The reaction of the other starting material 5 with 5-arylidenethiazolidin-2,4-dione (12) gave 3-[2-(2-methyl-5-nitroimidazol-1-yl)ethyl]-5-arylidenethiazolidin-2,4-dione (13) derivatives. Structural elucidation of the compounds was performed by IR, $^1H-NMR$ and MASS spectroscopic data and elemental analysis results. Antimicrobial activities of the compounds were examined and moderate activity was obtained.

Esophageal Stricture Secondary to Candidiasis in a Child with Glycogen Storage Disease 1b

  • Lee, Kyung Jae;Choi, Shin Jie;Kim, Woo Sun;Park, Sung-Sup;Moon, Jin Soo;Ko, Jae Sung
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.19 no.1
    • /
    • pp.71-75
    • /
    • 2016
  • Esophageal candidiasis is commonly seen in immunocompromised patients; however, candida esophagitis induced stricture is a very rare complication. We report the first case of esophageal stricture secondary to candidiasis in a glycogen storage disease (GSD) 1b child. The patient was diagnosed with GSD type 1b by liver biopsy. No mutation was found in the G6PC gene, but SLC37A4 gene sequencing revealed a compound heterozygous mutation (p.R28H and p.W107X, which was a novel mutation). The patient's absolute neutrophil count was continuously under $1,000/{\mu}L$ when he was over 6 years of age. He was admitted frequently for recurrent fever and infection, and frequently received intravenous antibiotics, antifungal agents. He complained of persistent dysphagia beginning at age 7 years. Esophageal stricture and multiple whitish patches were observed by endoscopy and endoscopic biopsy revealed numerous fungal hyphae consistent with candida esophagitis. He received esophageal balloon dilatation four times, and his symptoms improved.

UHPLC/TOFHRMS analysis and anti-inflammatory effect of leaf extracts from Zizyphus jujuba in LPS-stimulated RAW264.7 cells

  • Hyun Ji Eo;Sun-Young Lee;Gwang Hun Park
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.27-33
    • /
    • 2023
  • Zizyphus jujube is a plant in the buckthorn family (Rhamnaceae) that has been the subject of research into antibacterial, antifungal and anti-inflammatory properties of its fruit and seed. However, few studies have investigated its leaves. In this study, the anti-inflammatory activity of ZJL (an extract of Z. jujube leaf) was evaluated to verify its potential as an anti-inflammatory agent and SARS-CoV-2 medicine, using nitric oxide (NO) assay, RT-PCR, SDSPAGE, Western blotting, and UHPLC/TOFHRMS analysis. We found that ZJL suppresed pro-inflammatory mediators such as NO, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and tumor necrosis factor α (TNF-α) in lipopolysaccharide (LPS)-induced RAW264.7 cells. ZJL acted by inhibiting NF-KB and MAPK signaling pathway activity. We also confirmed that ZJL contains a phenol compound and flavonoids with anti-inflammatory activity such as trehalose, maleate, epigallocatechin, hyperoside, catechin, 3-O-coumaroylquinic acid, rhoifolin, gossypin, kaempferol 3-neohesperidoside, rutin, myricitrin, guaiaverin, quercitrin, quercetin, ursolic acid, and pheophorbide a. These findings suggest that ZJL may have great potential for the development of anti-inflammatory drugs and vaccines via inhibition of NF-κB and MAPK signaling in LPS-induced RAW264.7 cells.

Biocontrol of pepper diseases by Lysobacter enzymogenes LE429 and Neem Oil (Lysobacter enzymogenes LE429와 Neem oil을 이용한 고추 병해의 생물학적 방제)

  • Han, Thazin;Cho, Min-Young;Lee, Yong-Seong;Park, Yun-Seok;Park, Ro-Dong;Nam, Yi;Kim, Kil-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.4
    • /
    • pp.490-497
    • /
    • 2010
  • A chitinolytic bacterium having a strong antagonistic activity against various pathogens including Phytophtora capsici was isolated from rhizosphere soil, and identified as Lysobacter enzymogenes (named as LE429) based on 16S rRNA gene sequence analysis. This strain produced a number of substances such as chitinase, ${\beta}-1$, 3-glucanase, lipase, protease, gelatinase and an antibiotic compound. This antibiotic compound was purified by diaion HP-20, sephadex LH-20 column chromatography and HPLC. The purified compound was identified as phenylacetic acid by gas chromatography-electron ionization (GC-EI) and gas chromatography-chemical ionization (GC-CI) mass spectrometry. In field experiment, pepper plants were treated by the strain LE429 culture (CB), neem oil solution (NO), combination (CB+NO) or control (CON). Plant height and number of branches, flowers and pods of pepper plant in CB treatment were generally highest, and followed by CB+NO, CON and NO. The fungal pathogens were strongly inhibited, while several insect pests were discovered in CB treatment. Any insect pests were not found, while all fungal pathogens tested were not suppressed in NO treatment. However, in CB+NO treatment, non incidence of fungal pathogens and insect pests were found. The strain LE429 producing secondary metabolites with neem oil should be a potential agent to control fungal diseases and insect pests.

Analysis of Terpenoids as Volatile Compound Released During the Drying Process of Cryptomeria japonica (삼나무 건조 중 발생하는 휘발성 유기화합물 Terpenoids의 분석)

  • Lee, Su-Yeon;Gwak, Ki-Seob;Kim, Seon-Hong;Lee, Jun-Jae;Yeo, Hwan-Myeong;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.242-250
    • /
    • 2010
  • The aim of this study was to investigate the terpenoids of Total Volatile Organic Compounds (VOCs) released during drying of Cryptomeria japonica using the thermal extractor (TE). Considering the drying process of C. japonica, temperatures of TE were set at $27^{\circ}C$, $60^{\circ}C$, $80^{\circ}C$, $100^{\circ}C$, and $120^{\circ}C$, respectively. As the result, the emission factors of VOCs and terpenoids were increased as temperature increased. The amount of terpenoids included in VOCs emission factors were 87.5%, 81.6%, 83.6%, 90.1%, and 97.3% depending on above temperatures, respectively. Especially at$100^{\circ}C$ and $120^{\circ}C$, the amount of terpenoids were measured more than 90%. ${\delta}$-cadinene was the highest yield at each temperature and 32 types of terpenoids were collected. Emitted terpenoids were classified into the sesquiterpene group which consists of 15 carbon sources. These 32 sesquiterpenes were used for determining the useful bioactivity such as antifungal activity by the agar dilution. As the result, they showed the antifungal activity against Trichophyton rubrum, Trichophyton mentagrophytes, Microsporum gypseum. The 5,000 ppm concentration of terpenoids showed a strong activity with 100% against the 3 fungi. At the 1,000 ppm concentration of terpenoids, the antifungal activities against three fungi were 95.2%, 98.7%, and 97.3%, and their activities were a little inhibited at 100 ppm concentration.

Enhanced Tolerance of Chinese Cabbage Seedlings Mediated by Bacillus aryabhattai H26-2 and B. siamensis H30-3 against High Temperature Stress and Fungal Infections

  • Lee, Young Hee;Jang, Su Jeong;Han, Joon-Hee;Bae, Jin Su;Shin, Hyunsuk;Park, Hee Jin;Sang, Mee Kyung;Han, Song Hee;Kim, Kyoung Su;Han, Sang-Wook;Hong, Jeum Kyu
    • The Plant Pathology Journal
    • /
    • v.34 no.6
    • /
    • pp.555-566
    • /
    • 2018
  • Two rhizobacteria Bacillus aryabhattai H26-2 and B. siamensis H30-3 were evaluated whether they are involved in stress tolerance against drought and high temperature as well as fungal infections in Chinese cabbage plants. Chinese cabbage seedlings cv. Ryeokgwang (spring cultivar) has shown better growth compared to cv. Buram-3-ho (autumn cultivar) under high temperature conditions in a greenhouse, whilst there was no difference in drought stress tolerance of the two cultivars. In vitro growth of B. aryabhattai H26-2 and B. siamensis H30-3 were differentially regulated under PEG 6000-induced drought stress at different growing temperatures (30, 40 and $50^{\circ}C$). Pretreatment with B. aryabhattai H26-2 and B. siamensis H30-3 enhanced the tolerance of Chinese cabbage seedlings to high temperature, but not to drought stress. It turns out that only B. siamensis H30-3 showed in vitro antifungal activities and in planta crop protection against two fungal pathogens Alternaria brassicicola and Colletotrichum higginsianum causing black spots and anthracnose on Chinese cabbage plants cv. Ryeokgwang, respectively. B. siamensis H30-3 brings several genes involved in production of cyclic lipopeptides in its genome and secreted hydrolytic enzymes like chitinase, protease and cellulase. B. siamensis H30-3 was found to produce siderophore, a high affinity iron-chelating compound. Expressions of BrChi1 and BrGST1 genes were up-regulated in Chinese cabbage leaves by B. siamensis H30-3. These findings suggest that integration of B. aryabhattai H26-2 and B. siamensis H30-3 in Chinese cabbage production system may increase productivity through improved plant growth under high temperature and crop protection against fungal pathogens.