• Title/Summary/Keyword: antifungal activity.

Search Result 1,279, Processing Time 0.031 seconds

Microbiological Effects of Xanthorrhizol against Candida albicans (잔토리졸의 칸디다균 항균 효과)

  • Cho, Wan-Goo;Kim, Hyo-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.37-43
    • /
    • 2010
  • The objective of this study was to evaluate the antifungal properties of xanthorrhizol (extract from curcuma xanthorrhiza) against Candida albicans. Some of the commercial products were evaluated for their ability to inhibit growth of C. albicans. OTC product containing povidone iodide and cosmetic grade product with surfactants were tested. Antifungal activity was shown in 1.56% of OTC product, however, there was no antifungal effect in cosmetic product. For the comparison, we tested several materials. Povidone iodide, lemon tea tree oil and xanthorrhizol showed antifungal activities against C albicans in 0.25, 0.062 and 0.007%, respectively. We also tested the antifungal effects of povidone iodide and xanthorrhizol in surfactant base. Test results revealed that 2.5% of povidone iodide and 0.156% of xanthorrhizol showed similar antifungal effects. These findings support the application of xanthorrhizol for vaginal cleanser or personal cares using antifungal effect.

Antifungal Activity of Lactic Acid Bacteria Isolated from Kimchi Against Aspergillus fumigatus

  • Kim, Jeong-Dong
    • Mycobiology
    • /
    • v.33 no.4
    • /
    • pp.210-214
    • /
    • 2005
  • More than 120 isolates of lactic acid bacteria obtained from Kimchi was screened for antifungal activity against Aspergillus fumigatus. Approximately 10% of the isolates showed inhibitory activity and only 4.16% (five isolates) exhibited strong activity against the indicator fungus A. fumigatus. The five isolates showed a wide rang of antifungal activity against A. flavus, Fusarium moniliforme, Penicillium commune, and Rhizopus oryzae. They were identified by 16S rDNA sequencing as Lactobacillus cruvatus, L. lactis subsp. lactis, L. casei, L. pentosus, and L. sakei. The effect of Lactobacillus on mycelial growth and fungal biomass as well as its ability to produce toxic compounds were determined. The results indicate that the three species, Lactobacillus casei, L. lactis subsp. lactis, and L. pentosus, are active against A. fumigatus.

Investigation of Antifungal Activity for Plant Disease Control by Compost Teas Fermented under Different Temperatures (식물병 관리를 위해 다양한 온도조건에서 발효한 퇴비차의 항진균 활동에 관한 연구)

  • Tateda, Masafumi;Yamada, Kanae;Kim, Youngchul;Sato, Yukio
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.280-284
    • /
    • 2008
  • Efficacy of antifungal activity on plant pathogens by compost teas fermented under different temperatures was studied. Compost teas are recently chosen by agricultural producers for the better method of controlling plant diseases under increase of public consciousness against use of chemicals for controlling the diseases. Compost tea has been intensively studied; however, understanding of compost tea is still not well developed, and temperature influence during fermentation of compost tea on its antifungal activity has not been investigated. In this study, antifungal activities of compost teas fermented at 10, 20, 30, and $40^{\circ}C$ against selected 10 pathogens were observed. From the results, antifungal activities of compost teas at 20 and $30^{\circ}C$ of fermentation-temperatures showed the strongest while the weakest activity was observed with the compost tea at $10^{\circ}C$. Change of the activity by the fermentation-temperature apparently implied that microbes in the compost tea were strongly involved in its antifungal activity.

Antifungal Activity and Cultural Characteristics of the Streptomyces sp. A252 (Streptomyces sp. A252의 배양적 특성 및 항진균활성)

  • 이용세;최장원;라경수;백형석
    • Journal of Life Science
    • /
    • v.9 no.1
    • /
    • pp.8-14
    • /
    • 1999
  • The growth rate of the A252 strain was increased in tryptic soy broth (TSB) and malt extract-yeast extract medium (ISP-2), but the antifungal activity of culture filtrate was efficient in the media of TSB and nutrient broth. The mycelial growth and the antifungal activity of culture filtrate in TSB medium were optimized at $25^{\circ}C$ and pH 6.5. The growth in 2$\%$TSB concentration was more effective than 1$\%$, but there was no difference of the antifungal activity by the TSB concentrations. The mycelial growth of A252 strain reached to maximum at 72 hr after inoculation, whereas the antifungal activity of culture filtrate was shown to have the highest level at idiophase (60 hr) after inoculation and was decreased a little after 96 hr incubation. The antifungal activity was stable in the pH range of 4 to 11 and evenly at $121^{\circ}C$. The A252 strain was characterized as Streptomyces species by the physiological properties and examination of sporophore me morphology.

  • PDF

Antifungal Activity of Bacillus polyfermenticus CJ6 Isolated from Meju (메주로부터 분리한 Bacillus polyfermenticus CJ6의 항진균 활성)

  • Jung, Ji-Hye;Chang, Hae-Choon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.4
    • /
    • pp.509-516
    • /
    • 2009
  • The CJ6 bacterial strain, which possesses strong antifungal activity, was isolated from meju and identified as Bacillus polyfermenticus based on Gram staining, biochemical properties, and 16S rRNA gene sequencing. B. polyfermenticus CJ6 showed antimicrobial activity against the various pathogenic molds, yeasts, and bacteria. Antifungal activity from B. polyfermenticus CJ6 was reduced after 24 hr at $70^{\circ}C$ but antifungal activity was not completely destroyed. The antifungal activity was stable in the pH range of $3.0{\sim}9.0$, and inactivated by proteinase K, protease, and ${\alpha}$-chymotrypsin, which indicate its proteinaceous nature. The apparent molecular masses of the partially purified antifungal compound, as indicated by using the direct detection method in Tricine-SDS-PAGE, was approximately 1.4 kDa.

Antifungal Activities of Isothiazoline/Cabamate based Organic Antifungal Agent Activated-Cement Mortars (AACM)

  • Do Jeong-Yun;So Hyoung-Seok;Soh Yang-Seob
    • KCI Concrete Journal
    • /
    • v.14 no.4
    • /
    • pp.171-177
    • /
    • 2002
  • Antifungal agents are used to impart antibacterial or bactericidal properties to commodities and various articles used in industries and can be classified into two broad groups i.e organic and inorganic. Inorganic antifungal agents comprise of Ag, Zn, or Cu, etc. These elements tend to exhibit high level of antifungal activities, non-uniform dispersion in substrates, and have poor properties in expensive and cheap adhesiveness. In this study, the organic antifungal agent was used for the purpose of investigating the antifungal activity of antifungal agent activated-cement mortar (AACM) on the aspergilus niger of various fungus which can be easily discovered in the interiors and exteriors of buildings. In addition, an experiment on the basic physical properties of AACM such as compressive and flexural strength was carried out. The conclusion of this investigation revealed that a dosage increase of antifungal agent exhibits a high inhibitory effect on the aspergilus niger, and although there is a slight decrease in the strength of AACM, the strength of AACM was almost equal to that of inactivated cement mortar.

  • PDF

Antifungal Activity of Clove Essential Oil and its Volatile Vapour Against Dermatophytic Fungi

  • Chee, Hee-Youn;Lee, Min-Hee
    • Mycobiology
    • /
    • v.35 no.4
    • /
    • pp.241-243
    • /
    • 2007
  • Antifungal activities of clove essential oil and its volatile vapour against dermatophytic fungi including Candida albicans, Epidermophyton floccosum. Microsporum audouinii, Trichophyton mentagrophytes, and Trichophyton rubrum were investigated. Both clove essential oil and its volatile vapour strongly inhibit spore germination and mycelial growth of the dermatophytic fungi tested. The volatile vapour of clove essential oil showed fungistatic activity whereas direct application of clove essential oil showed fungicidal activity.

Molecular Characterization of Biosynthetic Genes of an Antifungal Compound Produced by Pseudomonas fluorescens MC07

  • Kim Jin-Woo;Kim Eun-Ha;Kang Yong-Sung;Choi Ok-Hee;Park Chang-Seuk;Hwang In-Gyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.3
    • /
    • pp.450-456
    • /
    • 2006
  • Pseudomonas fluorescens MC07 is a growth-promoting rhizobacterium that suppresses mycelial growth in fungi such as Rhizoctonia solani, Pythium ultimum, Fusarium oxysporum, and Phytophthora capsici. To determine the role of the bacterium's antifungal activity in disease suppression, we screened 2,500 colonies generated by Tn5lacZ insertions, and isolated a mutant 157 that had lost antifungal activity. The EcoRI fragment carrying Tn5lacZ was cloned into pBluescript II SK(+) and used as a probe to isolate wild-type clones from a genomic library of the parent strain, MC07. Two overlapping cosmid clones, pEH4 and pEH5, that had hybridized with the mutant clone were isolated. pEH4 conferred antifungal activity to the heterologous host P.fluorescens strain 1855.344, whereas pEH5 did not. Through transposon mutagenesis of pEH4 and complementation analyses, we delineated the 14.7-kb DNA region that is responsible for the biosynthesis of an antifungal compound. DNA sequence analysis of the region identified 11 possible open reading frames (ORF), ORF1 through ORF11. A BLAST search of each putative protein implied that the proteins may be involved in an antifungal activity similar to polyketides.

Antagonistic Potential of Native Trichoderma viride Strain against Potent Tea Fungal Pathogens in North East India

  • Naglot, A.;Goswami, S.;Rahman, I.;Shrimali, D.D.;Yadav, Kamlesh K.;Gupta, Vikas K.;Rabha, Aprana Jyoti;Gogoi, H.K.;Veer, Vijay
    • The Plant Pathology Journal
    • /
    • v.31 no.3
    • /
    • pp.278-289
    • /
    • 2015
  • Indigenous strains of Trichoderma species isolated from rhizosphere soils of Tea gardens of Assam, north eastern state of India were assessed for in vitro antagonism against two important tea fungal pathogens namely Pestalotia theae and Fusarium solani. A potent antagonist against both tea pathogenic fungi, designated as SDRLIN1, was selected and identified as Trichoderma viride. The strain also showed substantial antifungal activity against five standard phytopathogenic fungi. Culture filtrate collected from stationary growth phase of the antagonist demonstrated a significantly higher degree of inhibitory activity against all the test fungi, demonstrating the presence of an optimal blend of extracellular antifungal metabolites. Moreover, quantitative enzyme assay of exponential and stationary culture filtrates revealed that the activity of cellulase, ${\beta}$-1,3-glucanase, pectinase, and amylase was highest in the exponential phase, whereas the activity of proteases and chitinase was noted highest in the stationary phase. Morphological changes such as hyphal swelling and distortion were also observed in the fungal pathogen grown on potato dextrose agar containing stationary phase culture filtrate. Moreover, the antifungal activity of the filtrate was significantly reduced but not entirely after heat or proteinase K treatment, demonstrating substantial role of certain unknown thermostable antifungal compound(s) in the inhibitory activity.

Antifungal Activity of Chitosans on Candida albicans and Trichophyton rubrum and its Induction of Apoptosis (키토산의 Candida albicans와 Trichophyton rubrum에 대한 항진균 작용과 Apoptosis 유도작용)

  • Chee, Hee-Youn
    • The Korean Journal of Mycology
    • /
    • v.34 no.2
    • /
    • pp.119-121
    • /
    • 2006
  • The antifungal activity of chitosan ($M.W.\;400,000{\sim}500,000$) and chitooligosaccharide ($M.W.\;3,500{\sim}5,000$) was investigated against Candida albicans and Trichophyton rubrum. Chitosan showed antifungal activity against C. albicans and T. rubrum at 50 and 100 ng/ml, respectively while chitooligosaccharide did not suppress the growth of fungus. The mode of antifungal activity of chitosan was found to be fungicidal activity. In order to investigate the induction of apoptosis by chitosan, exposure of phosphatidylserine on the surface of the cytoplasmic membrane was observed by the FITC-annexin V reaction. The results showed that chitosan induced apoptosis on C. albicans.