• Title/Summary/Keyword: antifouling agent

Search Result 14, Processing Time 0.021 seconds

Antimicrobial Activities of Urushiol and Urushiol Derivatives (우루시올 및 우루시올 유도체의 항균 활성)

  • Kim, Jin-Chul;Ahn, Jeong-Keun;Ko, Soo-Young;Choi, Young-Hoon;Kim, Do-Hyun;Lee, Tae-Yong
    • Clean Technology
    • /
    • v.13 no.1 s.36
    • /
    • pp.22-27
    • /
    • 2007
  • Pacquer traditionally has been used to varnish. Many reports have revealed that lacquer has durability and antimicrobial activities. Therefore, we expect that lacquer will be used as a good antifouling agent to solve the environmental problem. Here we chemically synthesized urushiol, a major component in lacquer and two urushiol derivatives, urusiol regioisomer and cardanol. We also analyzed the antimicrobial activities of these molecules to examine the inhibitory effect on the formation of the biofilms. Our results showed that synthesized urushiol and its derivatives have strong antifungal activities. Urushiol also exhibited inhibitory effect on the growth of gram positive bacteria specifically. However urushiol derivatives have low antibacterial activities.

  • PDF

Toxic effect of chlorothalonil, an antifouling agent, on survival and population growth rate of a marine rotifer, Brachionus plicatilis (해산 로티퍼(Brachionus plicatilis)의 생존율 및 개체군 성장률을 이용한 신방오물질(Chlorothalonil)의 독성영향)

  • Heo, Seung;Lee, Ju-Wook;Choi, Hoon;Yoon, Sung-Jin;Kwon, Ki-Young;Hwang, Un-Ki;Park, Yun-Ho
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.3
    • /
    • pp.390-398
    • /
    • 2021
  • In this study, the toxicity of chlorothalonil was investigated using survival rate and population growth rate of a marine rotifer, Brachionus plicatilis, typically used in live food in marine aquaculture systems. The survival rate of B. plicatilis was determined after 24 h of exposure to chlorothalonil (0.010-0.156 mg L-1). Population growth rate of B. plicatilis was calculated after 72 h of exposure to chlorothalonil (0.078-1.250 mg L-1). The survival rate and population growth rate of B. plicatilis exposed to chlorothalonil in single-dose toxicity assessment showed concentration-dependent reductions. Survival rates of B. plicatilis exposed to chlorothalonil had the following values: NOEC, 0.020mg L-1; LOEC, 0.039 mg L-1; and EC50, 0.057 mg L-1. Population growth rate of B. plicatilis exposed to chlorothalonil had the following values: NOEC, 0.156 mg L-1; LOEC, 0.313 mg L-1; and EC50, 0.506 mg L-1. When the residual concentration of chlorothalonil in the marine coastal area was more than 0.039 mg L-1, it had a toxic effect on B. plicatilis, a zooplankton. This paper provides toxicity values that can be used as baseline data for organizing environmental standards of chlorothalonil. It also provides insight into toxic effects of chlorothalonil on other non-target organisms.

Spatial and Vertical Distribution of Polycyclic Aromatic Hydrocarbons in Sediment of the Shipyard Area in Gohyeon Bay (고현만 조선소 주변해역 퇴적물내 다환방향족탄화수소의 시공간적 분포특성)

  • Park, Pan-Soo;Kim, Nam-Sook;Yim, Un-Hyuk;Shim, Won-Joon;Kim, Gi-Beum
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.2
    • /
    • pp.68-74
    • /
    • 2009
  • Polycyclic aromatic hydrocarbons (PAHs), one of ubiquitous organic pollutants in marine environments, are major toxic components of petroleum and are produced during the incomplete combustion of organic materials. As shipyards are located inside of natural or artificial semi-enclosed bay, even a relatively weak environmental disturbance by ship-building activity can cause severe damage to marine ecosystem in the bay. Many studies of pollution in shipyard area have been focused on the antifouling agent, like tributyltin. This study aimed to investigate the effect of ship-building activity on PAH contamination. Total PAHs concentration was higher nearby and inside shipyard area than outside, implying that shipyard could be one of major source area of PAH contamination to pose harmful effects to surrounding environments. Through PAH profile and source recognition index, the source of PAHs inputs in this area was estimated to originate from both petrogenic and pyrogenic origin. PAH levels showed a significant correlation with total butyltins, indicating that ship-building activity influenced PAH concentration and distribution. Vertical distribution of PAHs historically confirmed the correlation between shipbuilding activity and PAHs contamination.

  • PDF

The impact of chlorothalonil on female gametophyte survival rate and relative growth rate of Undaria pinnatifida (Chlorothalonil이 미역(Undaria pinnatifida) 배우체의 생존 및 상대성장률에 미치는 영향)

  • Yun-Ho Park;Bo-Ram Sim;Un-Ki Hwang;Ju-Wook Lee
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.3
    • /
    • pp.256-265
    • /
    • 2023
  • Chlorothalonil is continuously introduced into the marine environment and has significant toxic effects on various marine organisms, however, research on its effect on seaweed is limited. Therefore, we analyzed the impact of chlorothalonil on the early life stages of major aquaculture species in Korea, Undaria pinnatifida. U. pinnatifida female gametophytes were exposed to different concentrations of chlorothalonil (0, 0.03, 0.05, 0.10, 0.20, and 0.40 mg L-1), and their survival rate and relative growth rate were analyzed. The no observed effect concentration (NOEC), lowest observed effect concentration (LOEC), and median lethal concentration (LC50) for female gametophyte survival were determined as 0.05, 0.10, and 0.141(0.121-0.166)mg L-1. NOEC, LOEC, and median effective concentration (EC50) for relative growth rate were 0.10, 0.20, and 0.124 (0.119-0.131) mg L-1. Therefore, female gametophytes of U. pinnatifida are expected to experience toxic effects at concentrations above 0.05-0.10 mg L-1 of chlorothalonil. These research findings are anticipated to serve as crucial reference data for evaluating the effects of chlorothalonil on the health of U. pinnatifida in the early life stages.