DOI QR코드

DOI QR Code

The impact of chlorothalonil on female gametophyte survival rate and relative growth rate of Undaria pinnatifida

Chlorothalonil이 미역(Undaria pinnatifida) 배우체의 생존 및 상대성장률에 미치는 영향

  • Yun-Ho Park (Risk Assessment Division, Environmental Health Research Department, National Institute of Environmental Research) ;
  • Bo-Ram Sim (West Sea Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Un-Ki Hwang (Tidal Flat Research Center, National Institute of Fisheries Science) ;
  • Ju-Wook Lee (West Sea Fisheries Research Institute, National Institute of Fisheries Science)
  • 박윤호 (국립환경과학원 환경건강연구부 위해성평가연구과) ;
  • 심보람 (국립수산과학원 서해수산연구소 기후환경자원과) ;
  • 황운기 (국립수산과학원 기후환경연구부 갯벌연구센터) ;
  • 이주욱 (국립수산과학원 서해수산연구소 기후환경자원과)
  • Received : 2023.08.03
  • Accepted : 2023.08.29
  • Published : 2023.09.30

Abstract

Chlorothalonil is continuously introduced into the marine environment and has significant toxic effects on various marine organisms, however, research on its effect on seaweed is limited. Therefore, we analyzed the impact of chlorothalonil on the early life stages of major aquaculture species in Korea, Undaria pinnatifida. U. pinnatifida female gametophytes were exposed to different concentrations of chlorothalonil (0, 0.03, 0.05, 0.10, 0.20, and 0.40 mg L-1), and their survival rate and relative growth rate were analyzed. The no observed effect concentration (NOEC), lowest observed effect concentration (LOEC), and median lethal concentration (LC50) for female gametophyte survival were determined as 0.05, 0.10, and 0.141(0.121-0.166)mg L-1. NOEC, LOEC, and median effective concentration (EC50) for relative growth rate were 0.10, 0.20, and 0.124 (0.119-0.131) mg L-1. Therefore, female gametophytes of U. pinnatifida are expected to experience toxic effects at concentrations above 0.05-0.10 mg L-1 of chlorothalonil. These research findings are anticipated to serve as crucial reference data for evaluating the effects of chlorothalonil on the health of U. pinnatifida in the early life stages.

TBT 사용이 금지된 이후, 방오도료의 방오능력을 보완하기 위하여 booster biocides를 추가하여 사용하고 있다. Booster biocides 중에서 chlorothalonil은 해양환경 내 지속적으로 유입되며 다양한 해양생물에게 심각한 독성영향을 미치고 있지만 해조류에 대한 연구는 제한적이 다. 따라서 우리나라의 주요 양식생물인 미역(Undaria pinnatifida)의 초기생활사에 chlorothalonil이 미치는 영향을 분석하였다. U. pinnatifida의 암배우체를 chlorothalonil(0, 0.03, 0.05, 0.10, 0.20, 0.40 mg L-1)에 노출하여 생존율과 상대성장률을 분석하였다. 암배우체 생존율의 무영향 농도(NOEC), 최소영향농도(LOEC), 반수치사농도(LC50)는 0.05, 0.10, 0.141 (0.121~0.166) mg L-1이었고 상대성장률의 NOEC, LOEC, 반수영향농도(EC50)은 0.10, 0.20, 0.124 (0.119~0.131) mg L-1로 분석되었다. 따라서, 미역의 암배우체는 0.05~0.10 mg L-1 이상의 농도에서 독성영향을 받기 시작할 것으로 판단된다. 본 연구의 결과는 chlorothalonil에 대한 U. pinnatifida 초기생활사의 건강도를 평가하기 위한 기준자료로 활용될 것으로 기대된다.

Keywords

Acknowledgement

본 연구는 2023년 국립수산과학원 경상과제(R2023009)의 연구비 지원으로 국립수산과학원 서해수산연구소 기후환경자원과에서 수행하였다

References

  1. Al-Dulaimi O, ME Rateb, AS Hursthouse, G Thomson and M Yaseen. 2021. The brown seaweeds of Scotland, their importance and applications. Environments 8:59. https://doi.org/10.3390/environments8060059
  2. Amara I, W Miled, RB Slama and N Ladhari. 2018. Antifouling processes and toxicity effects of antifouling paints on marine environment. A review. Environ. Toxicol. Pharmacol. 57:115-130. https://doi.org/10.1016/j.etap.2017.12.001
  3. Bao VWW, KMY Leung, JW Qiu and MHW Lam. 2011. Acute toxicities of five commonly used antifouling booster biocides to selected subtropical and cosmopolitan marine species. Mar. Pollut. Bull. 62:1147-1151. https://doi.org/10.1016/j.marpolbul.2011.02.041
  4. Bellas J. 2006. Comparative toxicity of alternative antifouling biocides on embryos and larvae of marine invertebrates. Sci. Total Environ. 367:573-585. https://doi.org/10.1016/j.scitotenv.2006.01.028
  5. Christen V, J Krebs and K Fent. 2019. Fungicides chlorothanolin, azoxystrobin and folpet induce transcriptional alterations in genes encoding enzymes involved in oxidative phosphorylation and metabolism in honey bees(Apis mellifera) at sublethal concentrations. J. Hazard. Mater. 377:215-226. https://doi.org/10.1016/j.jhazmat.2019.05.056
  6. Cima F, M Bragadrin and L Ballarin. 2008. Toxic effects of new antifouling compounds on tunicate haemocytes I. Sea-Nine 211TM and chlorothalonil. Aquat. Toxicol. 86:299-312. https://doi.org/10.1016/j.aquatox.2007.11.010
  7. DeLorenzo ME and MH Fulton. 2012. Comparative risk assessment of permethrin, chlorothalonil, and diuron to coastal aquatic species. Mar. Pollut. Bull. 64:1291-1299. https://doi.org/10.1016/j.marpolbul.2012.05.011
  8. DeLorenzo ME and L Serrano. 2003. Individual and mixture toxicity of three pesticides; atrazine, chlorpyrifos, and chlorothalonil to the marine phytoplankton species Dunaliella tertiolecta. J. Environ. Sci. Health Part B-Pestic. Contam. Agric. Wastes 38:529-538. https://doi.org/10.1081/PFC-120023511
  9. Ernst W, K Doe, P Jonah, J Young, G Julien and P Hennigar. 1991. The toxicity of chlorothalonil to aquatic fauna and the impact of its operational use on a pond ecosystem. Arch. Environ. Contam. Toxicol. 21:1-9. https://doi.org/10.1007/BF01055550
  10. Garaventa F, C Gambardella, A Di Fino, M Pittore and M Faimali. 2010. Swimming speed alteration of Artemia sp. and Brachionus plicatilis as a sub-lethal behavioural end-point for ecotoxicological surveys. Ecotoxicology 19:512-519. https://doi.org/10.1007/s10646-010-0461-8
  11. Guerreiro ADS, FEL Abreu, G Fillmann and JZ Sandrini. 2020. Effects of chlorothalonil on the antioxidant defense system of mussels Perna perna. Ecotox. Environ. Safe. 190:110119. https://doi.org/10.1016/j.ecoenv.2019.110119
  12. Guerreiro ADS, RC Rola, MT Rovani, SRD Costa and JZ Sandrini. 2017. Antifouling biocides: Impairment of bivalve immune system by chlorothalonil. Aquat. Toxicol. 189:194-199. https://doi.org/10.1016/j.aquatox.2017.06.012
  13. Hamer M, SK Maynard and S Schneider. 2019. A pulsed-dose study evaluating chronic toxicity of chlorothalonil to fish: A case study for environmental risk assessment. Environ. Toxicol. Chem. 38:1549-1559. https://doi.org/10.1002/etc.4421
  14. Haque MN, HJ Eom, SE Nam, YK Shin and JS Rhee. 2019. Chlorothalonil induces oxidative stress and reduces enzymatic activities of Na+/K+-ATPase and acetylcholinesterase in gill tissues of marine bivalves. PLoS One 14:e0214236. https://doi.org/10.1371/journal.pone.0214236
  15. Heo S, JW Lee, H Choi, SJ Yoon, KY Kwon, UK Hwang and YH Park. 2021. Toxic effect of chlorothalonil, an antifouling agent, on survival and population growth rate of a marine rotifer, Brachionus plicatilis. Korean J. Environ. Biol. 39:390-398. https://doi.org/10.11626/KJEB.2021.39.3.390
  16. Hintze S, YSB Hannalla, S Guinchard, D Hunkeler and G Glauser. 2021. Determination of chlorothalonil metabolites in soil and water samples. J. Chromatogr. A 1655:462507. https://doi.org/10.1016/j.chroma.2021.462507
  17. Johansson P, KM Eriksson, L Axelsson and H Blanck. 2012. Effects of seven antifouling compounds on photosynthesis and inorganic carbon use in sugar kelp Saccharina latissima (Linnaeus). Arch. Environ. Contam. Toxicol. 63:365-377. https://doi.org/10.1007/s00244-012-9778-z
  18. Jung SM, JS Bae, SG Kang, JS Son, JH Jeon, HJ Lee, JY Jeon, M Sidharthan, SH Ryu and HW Shin. 2017. Acute toxicity of organic antifouling biocides to phytoplankton Nitzschia pungens and zooplankton Artemia larvae. Mar. Pollut. Bull. 124:811-818. https://doi.org/10.1016/j.marpolbul.2016.11.047
  19. Key PB, SL Meyer and KW Chung. 2003. Lethal and sub-lethal effects of the fungicide chlorothalonil on three life stages of the grass shrimp, Palaemonetes pugio. J. Environ. Sci. Health Part B-Pestic. Contam. Agric. Wastes 38:539-549. https://doi.org/10.1081/PFC-120023512
  20. Lee H, J Park, K Shin, S Depuydt, S Choi, J de Saeger and T Han. 2020a. Application of a programmed semi-automated Ulva pertusa bioassay for testing single toxicants and stream water quality. Aquat. Toxicol. 221:105426. https://doi.org/10.1016/j.aquatox.2020.105426
  21. Lee H, S Depuydt, S Choi, T Han and J Park. 2020b. Rapid toxicity assessment of six antifouling booster biocides using a microplate-based chlorophyll fluorescence in Undaria pinnatifida gametophytes. Ecotoxicology 29:559-570. https://doi.org/10.1007/s10646-020-02207-2
  22. Lee JW, H Choi, YH Park, Y Lee, S Heo and UK Hwang. 2019. Toxic evaluation of phenanthrene and zinc undecylenate using the population growth rates of marine diatom, Skeletonema costatum. Korean J. Environ. Biol. 37:372-379. https://doi.org/10.11626/KJEB.2019.37.3.372
  23. Lee JW, YH Park, BR Sim, HJ Jeon, S Heo and UK Hwang. 2022. A study of environmental conditions of survival rate and relative growth rate in female gametophyte of Undaria pinnatifida for toxicity assessment. J. Mar. Life Sci. 7:86-93. https://doi.org/10.23005/ksmls.2022.7.2.86
  24. Lee MRN, UJ Kim, IS Lee, M Choi and JE Oh. 2015. Assessment of organotin and tin-free antifouling paints contamination in the Korean coastal area. Mar. Pollut. Bull. 99:157-165. https://doi.org/10.1016/j.marpolbul.2015.07.038
  25. Lee S, J Chung, H Won, D Lee and YW Lee. 2011. Analysis of antifouling agents after regulation of tributyltin compounds in Korea. J. Hazard. Mater. 185:1318-1325. https://doi.org/10.1016/j.jhazmat.2010.10.048
  26. Li X, Y Yao, S Wang and S Xu. 2020. Resveratrol relieves chlorothalonil-induced apoptosis and necroptosis through miR-15a/ Bcl2-A20 axis in fish kidney cells. Fish Shellfish Immunol. 107:427-434. https://doi.org/10.1016/j.fsi.2020.11.007
  27. Lin H, S Zhao, X Fan, Y Ma, X Wu, Y Su and J Hu. 2019. Residue behavior and dietary risk assessment of chlorothalonil and its metabolite SDS-3701 in water spinach to propose maximum residue limit (MRL). Regul. Toxicol. Pharmacol. 107:104416. https://doi.org/10.1016/j.yrtph.2019.104416
  28. Lopes FC, ASV Junior, CD Corcini, JAA Sanchez, DM Pires, JR Pereira, EG Primel, G Fillmannm and CDMG Martins. 2020. Impacts of the biocide chlorothalonil on biomarkers of oxidative stress, genotoxicity, and sperm quality in guppy Poecilia vivipara. Ecotox. Environ. Safe. 188:109847. https://doi.org/10.1016/j.ecoenv.2019.109847
  29. MOF. 2018. Korean Standard Method of Examination for Marine Environment. Ministry of Oceans and Fisheries. Sejong, Korea. https://www.law.go.kr/LSW/admRulInfoP.do?admRulSeq=2100000170850#J6-0:0. Accessed August 29, 2023.
  30. Morais LG, PK Gusso-Choueri, FEL Abreu, IB Castro, DM Abessa and RB Choueri. 2023. Multilevel assessment of chlorothalonil sediment toxicity to Latin American estuarine biota: Effects on biomarkers, reproduction and survival in different benthic organisms. Sci. Total Environ. 872:162215. https://doi.org/10.1016/j.scitotenv.2023.162215
  31. Onduka T, A Kakuno, K Kono, K Ito, K Mochida and K Fujii. 2012. Toxicity of chlorothalonil to marine organisms. Fish. Sci. 78:1301-1308. https://doi.org/10.1007/s12562-012-0562-9
  32. Soroldoni S, F Abreu, IB Castro, FA Duarte and GLL Pinho. 2017. Are antifouling paint particles a continuous source of toxic chemicals to the marine environment? J. Hazard. Mater. 330:76-82. https://doi.org/10.1016/j.jhazmat.2017.02.001
  33. Tatewaki M. 1966. Formation of a crustose sporophyte with unilocular sporangia in Scitosiphon lomentaria. Phycologia 6:62-66. https://doi.org/10.2216/i0031-8884-6-1-62.1
  34. Thomas KV and S Brooks. 2010. The environmental fate and effects of antifouling paint biocides. Biofouling 26:73-88. https://doi.org/10.1080/08927010903216564
  35. Van Scoy AR and RS Tjeerdema. 2014. Environmental fate and toxicology of chlorothalonil. Rev. Environ. Contam. Toxicol. 323:89-105. https://doi.org/10.1007/978-3-319-06746-9_4
  36. Voulvoulis N, MD Scrimshaw and JN Lester. 2000. Occurrence of four biocides utilized in antifouling paints, as alternatives to organotin compounds, in waters and sediments of a commercial estuary in the UK. Mar. Pollut. Bull. 40:938-946. https://doi.org/10.1016/S0025-326X(00)00034-5
  37. Wyss GS, R Charudattan, EN Rosskopf and RC Littell. 2004. Effects of selected pesticides and adjuvants on germination and vegetative growth of Phomopsis amaranthicola, a biocontrol agent for Amaranthus spp. Weed Res. 44:469-482. https://doi.org/10.1111/j.1365-3180.2004.00425.x
  38. Yee MSL, PS Khiew, WS Chiu, YF Tan, YY Kok and CO Leong. 2016. Green synthesis of graphene-silver nanocomposites and its application as a potent marine antifouling agent. Colloid Surf. B-Biointerfaces 148:392-401. https://doi.org/10.1016/j.colsurfb.2016.09.011
  39. Zhang M, Z Xu, Y Teng, P Christie, J Wang, W Ren, Y Luo and Z Li. 2016. Non-target effects of repeated chlorothalonil application on soil nitrogen cycling: The key functional gene study. Sci. Total Environ. 543:636-643. https://doi.org/10.1016/j.scitotenv.2015.11.053
  40. Zhang Q, M Saleem and C Wang. 2017. Probiotic strain Stenotrophomonas acidaminiphila BJ1 degrades and reduces chlorothalonil toxicity to soil enzymes, microbial communities and plant roots. AMB Express 7:227. https://doi.org/10.1186/s13568-017-0530-y