• Title/Summary/Keyword: antidiabetes

Search Result 22, Processing Time 0.02 seconds

Antidiabetic and Antioxidative Effect of Lycii fructus in Streptozotocin-Induced Diabetic Rats (구기자 분획물이 Streptozotocin으로 유발 된 당뇨 흰쥐에 대한 항당뇨 및 항산화작용에 미치는 효과)

  • Kim, Ok-Kyung
    • Korean Journal of Pharmacognosy
    • /
    • v.40 no.2
    • /
    • pp.128-136
    • /
    • 2009
  • This study was carried out to investigate the antidiabetic and antioxidative effect of Lycii fructus in the Streptozotocin(STZ)-induced diabetic rats. The effective fractions were prepared as a form of organic solvents of $CH_{3}(CH_{2})_{4}CH_{3}$ $CHCI_{3}$, EtOAc, BuOH and $H_{2}O$ fractions prepared from the EtOH extract of Lycii fructus and The diabetes were induced by an tail-intravenous injection of STZ with a dose of 45 mg/kg dissolved in citrate buffer. The various fractions of Lycii fructus were orally administrated once a day for 7 days. The contents of serum glucose, and triglyceride in the $CHCI_{3}$ fraction and hepatic lipid peroxidation in the EtOAc, BuOH and $H_{2}O$ fractions treated rats were significantly decreased when compared to those of the STZ-control group In addition, an activity of hepatic GST in the BuOH fraction treated rats was significantly increased compared to that of the STZ-control group. whereas, activities of hepatic catalase, GSH-Px in the BuOH fraction treated rats were significantly decreased compared to those of the STZ-control group. Meanwhile, The content of hepatic glycogen and avtivity of hepatic glucokinase in $CHCI_{3}$ fraction treated rats were significantly increased, but activity of glucose-6-pase was significantly decreased in the $CHCI_{3}$ fraction treated rats. In conclusion, these results indicated that the BuOH fraction of Lycii fructus was effective for the antioxidation, and also the $CHCI_{3}$ fraction of Lycii fructus was effective for the antidiabetes in the STZ-induced diabetic rats.

Bio-assay Guided Isolation and Identification of α-Glucosidase Inhibitors from the Leaves of Diospyros lotus (고욤나무 잎으로부터 활성유도 분획법에 의한 α-Glucosidase 저해물질 분리 및 확인)

  • Kim, Sang Jun;Kim, Ji-Ae;Kim, Da Hye;Kwak, Seol Hwa;Yu, Kang-Yeol;Jang, Seon Il;Kim, Seon-Yeong;Jeong, Seung-Il
    • Korean Journal of Pharmacognosy
    • /
    • v.46 no.2
    • /
    • pp.105-108
    • /
    • 2015
  • To establish the anti-diabetic(α-glucosidase inhibitory) activity of D. lotus leaf extract, isolate and identify the constituents responsible for the activity. The methanolic extract of leaves was partitioned between water, n-butanol and ethyl acetate. Bio-assay guided fractionation, based on inhibition of ;${\alpha}$-glucosidase, allowed isolation and identification of the active components. Liquid chromatography/mass spectrometry(LC/MS), 1 H-NMR and 13 C-NMR spectra analyses demonstrated that the active compound was myricetin-3-O-;${\alpha}$-L-rhamnoside(1). Compound 1 demonstrated a strong inhibition on the α-glucosidase, in vitro and ;${\alpha}$-glucosidase inhibitory value was calculated as 98.08%, when that of a reference drug, acarbose was estimated as 83.03%. The present study indicates compound 1 could be considered as an ;${\alpha}$-glucosidase inhibitor and developed as an important antidiabetes agent for type II diabetes therapy.

The Protective Effects of Chrysanthemum cornarium L. var. spatiosum Extract on HIT-T15 Pancreatic β-Cells against Alloxan-induced Oxidative Stress (Alloxan에 의한 HIT-T15 세포 손상에 대한 쑥갓주정추출물의 세포보호효과)

  • Kim, In-Hye;Cho, Kang-Jin;Ko, Jeong-Sook;Kim, Jae-Hyun;Om, Ae-Son
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.1
    • /
    • pp.123-131
    • /
    • 2012
  • The objective of the present study was to evaluate the potential antidiabetic and antioxidant effect of the ethanol extract from Chrysanthemum cornarium L. var. spatiosum(CSE) against alloxan-induced oxidative stress in pancreatic ${\beta}$-cells, HIT-T15. In this study, the antidiabetic effect of CSE was examined using the 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazoliu bromide(MTT) cell proliferation assay, lactate dehydrogenase(LDH) release assay, $NAD^+$/NADH ratio and insulin secretion. To further investigate whether CSE is involved in the antioxidant activity of alloxan-damaged HIT-T15 cells, its antioxidant effect against alloxan-induced oxidative stress was measured in HIT-T15 cells by determining the levels of antioxidant enzymes including superoxide dismutase(SOD), glutathione S-transferase(GST), glutathione reductase(GR) and glutathione peroxidase(GPx). The results of this analysis showed that alloxan significantly decreased cell viability, increased LDH leakage, and lowered $NAD^+$/NADH ratio and insulin secretion in HIT-T15 cells. However, CSE significantly increased the viability of alloxan-treated cells and lowered LDH leakage. The intracellular NAD+/NADH ratio and insulin secretion were also significantly increased by 1.7-fold and 1.3-fold, respectively, after treatment with 100 ${\mu}g/m{\ell}$ CSE. The HIT-T15 cells treated with alloxan showed significant decreases in the activities of antioxidant enzymes, while CSE significantly elevated the levels of antioxidant enzymes. These findings suggest that CSE could have a protective effect against cytotoxicity and dysfunction of pancreatic cells in the presence of alloxan-induced oxidative stress.

Antioxidant and α-Glucosidase Inhibitory Activities of the Extracts of Aster koraiensis Leaves (국내산 벌개미취 잎 추출물의 α-glucosidase 억제능 및 항산화 활성 평가)

  • Lee, Tae Gu;Hyun, Soo Wang;Lee, Ik Soo;Park, Bong Kyun;Kim, Jin Sook;Kim, Chan Sik
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.5
    • /
    • pp.382-390
    • /
    • 2018
  • Background: The plant Aster koraiensis has long been used as an ingredient in folk medicine. It has been reported that Aster koraiensis extract (AKE) prevents the progression of diabetes-induced retinopathy and nephropathy. However, although these beneficial effects of AKE on diabetes complications have been identified, the antidiabetic effects of AKE have not yet been completely investigated and quantified. In the present study, the glucose-lowering and antioxidant effects of aqueous and ethanolic AKEs were evaluated. Methods and Results: The glucose-lowering effects of aqueous and ethanolic (30%-, 50%-, and 80%-ethanol) AKEs were investigated via ${\alpha}$-glucosidase inhibitory assays. The mode of inhibition by AKEs on ${\alpha}$-glucosidase was identified through kinetic analysis. The total antioxidant capacity of each of the 4 AKEs was evaluated by assessing their conversion rate of $Cu^{2+}$ to $Cu^+$. The content of chlorogenic acid and 3,5-di-O-caffeoylquinic acid, the bioactive compounds in AKE, in each extract were analyzed by high performance liquid chromatography (HPLC). The AKEs showed potent ${\alpha}$-glucosidase inhibitory activity with mixed inhibition mode, and significant antioxidant capacity. Conclusions: These results of this study suggested that the AKEs tested had ${\alpha}$-glucosidase inhibitory and antioxidant effects. Among the extracts, the 80% ethanol extract showed the most significant ${\alpha}$-glucosidase inhibitory activity, with a half maximal inhibitory concentration ($IC_{50}$ value) of $1.65{\pm}0.36mg/m{\ell}$ and a half maximal effective concentration ($EC_{50}$ value) for its antioxidant activity of $0.42{\pm}0.10mg/m{\ell}$. It can therefore be used as a source of therapeutic agents to treat diabetes patients.

Cytoprotective Effect of Ethanol Extract from Maesil (Prunus mume Sieb. et Zucc.) on Alloxan-induced Oxidative Damage in Pancreatic-cell, HIT-T15 (Alloxan에 의한 HIT-T15 세포의 산화적 손상에 대한 매실(Prunus mume Sieb. et Zucc.) 주정추출물의 세포보호효과)

  • Kim, In-Hye;Kim, Jong-Bae;Cho, Kang-Jin;Kim, Jae-Hyun;Om, Ae-Son
    • Korean Journal of Plant Resources
    • /
    • v.25 no.2
    • /
    • pp.184-192
    • /
    • 2012
  • The present study was designed to examine the potential antidiabetic and antioxidant effect of ethanol extract from $Prunus$ $mume$ fruit (PME) against alloxan-induced oxidative stress in pancreatic ${\beta}$-cells, HIT-T15. To evaluate the antidiabetic effect of PME, 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazoliu bromide (MTT) cell proliferation assay, lactate dehydrogenase (LDH) release assay, $NAD^+$/NADH ratio and insulin secretion were assessed. We also measured its antioxidant effect against alloxan-induced oxidative stress in the cells by assessing the levels of the antioxidant enzymes including superoxide dismutase (SOD), glutathione S-transferase (GST), glutathione reductase (GR) and glutathione peroxidase (GPx). The results of this analysis showed that alloxan significantly decreased cell viability, increased LDH leakage, and lowered $NAD^+$ /NADH ratio and insulin secretion in HIT-T15 cells. However, PME significantly increased the viability of alloxan-treated cells and lowered LDH leakage. The intracellular $NAD^+$ /NADH ratio and insulin secretion were also increased by 1.5~1.9-fold and 1.4-fold, respectively, after treatment with the PME. The HIT-T15 cells treated with alloxan showed significant decreases in the activities of antioxidant enzymes, while PME significantly elevated the levels of antioxidant enzymes. Based on these results, we suggest that PME could have a protective effect against the cytotoxicity and dysfunction of pancreatic ${\beta}$-cells in the presence of alloxan-induced oxidative stress.

Development and validation of an LC-MS/MS method for the simultaneous analysis of 26 anti-diabetic drugs in adulterated dietary supplements and its application to a forensic sample

  • Kim, Nam Sook;Yoo, Geum Joo;Kim, Kyu Yeon;Lee, Ji Hyun;Park, Sung-Kwan;Baek, Sun Young;Kang, Hoil
    • Analytical Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.35-47
    • /
    • 2019
  • In this study, high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was employed to detect 26 antidiabetic compounds in adulterated dietary supplements using a simple, selective method. The work presented herein may help prevent incidents related to food adulteration and restrict the illegal food market. The best separation was obtained on a Shiseido Capcell Pak(R) C18 MG-II ($2.0mm{\times}100mm$, $3{\mu}m$), which improved the peak shape and MS detection sensitivity of the target compounds. A gradient elution system composed of 0.1 % (v/v) formic acid in distilled water and methanol at a flow rate of 0.3 mL/min for 18 min was utilized. A triple quadrupole mass spectrometer with an electrospray ionization source operated in the positive or negative mode was employed as the detector. The developed method was validated as follows: specificity was confirmed in the multiple reaction monitoring mode using the precursor and product ion pairs. For solid samples, LOD ranged from 0.16 to 20.00 ng/mL and LOQ ranged from 0.50 to 60.00 ng/mL, and for liquid samples, LOD ranged from 0.16 to 20.00 ng/mL and LOQ ranged from 0.50 to 60.00 ng/mL. Satisfactory linearity was obtained from calibration curves, with $R^2$ > 0.99. Both intra and inter-day precision were less than 13.19 %. Accuracies ranged from 80.69 to 118.81 % (intra/inter-day), with a stability of less than 14.88 %. Mean recovery was found to be 80.6-119.0 % and less than 13.4 % RSD. Using the validated method, glibenclamide and pioglitazone were simultaneously determined in one capsule at concentrations of 1.52 and 0.53 mg (per capsule), respectively.

Glycosyltransformation of ginsenoside Rh2 into two novel ginsenosides using recombinant glycosyltransferase from Lactobacillus rhamnosus and its in vitro applications

  • Wang, Dan-Dan;Kim, Yeon-Ju;Baek, Nam In;Mathiyalagan, Ramya;Wang, Chao;Jin, Yan;Xu, Xing Yue;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.45 no.1
    • /
    • pp.48-57
    • /
    • 2021
  • Background: Ginsenoside Rh2 is well known for many pharmacological activities, such as anticancer, antidiabetes, antiinflammatory, and antiobesity properties. Glycosyltransferases (GTs) are ubiquitous enzymes present in nature and are widely used for the synthesis of oligosaccharides, polysaccharides, glycoconjugates, and novel derivatives. We aimed to synthesize new ginsenosides from Rh2 using the recombinant GT enzyme and investigate its cytotoxicity with diverse cell lines. Methods: We have used a GT gene with 1,224-bp gene sequence cloned from Lactobacillus rhamnosus (LRGT) and then expressed in Escherichia coli BL21 (DE3). The recombinant GT protein was purified and demonstrated to transform Rh2 into two novel ginsenosides, and they were characterized by nuclear magnetic resonance (NMR) techniques and evaluated by 3-(4, 5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide assay. Results: Two novel ginsenosides with an additional glucopyranosyl (6→1) and two additional glucopyranosyl (6→1) linked with the C-3 position of the substrate Rh2 were synthesized, respectively. Cell viability assay in the lung cancer (A549) cell line showed that glucosyl ginsenoside Rh2 inhibited cell viability more potently than ginsenoside Rg3 and Rh2 at a concentration of 10 μM. Furthermore, glucosyl ginsenoside Rh2 did not exhibit any cytotoxic effect in murine macrophage cells (RAW264.7), mouse embryo fibroblasts cells (3T3-L1), and skin cells (B16BL6) at a concentration of 10 μM compared with ginsenoside Rh2 and Rg3. Conclusion: This is the first report on the synthesis of two novel ginsenosides, namely, glucosyl ginsenoside Rh2 and diglucosyl ginsenoside Rh2 from Rh2 by using recombinant GT isolated from L. rhamnosus. Moreover, diglucosyl ginsenoside Rh2 might be a new candidate for treatment of inflammation, obesity, and skin whiting, and especially for anticancer.

Inhibitory Effects of Various Mulberry Fruits (Morus alba L.) on Related Enzymes to Adult Disease (품종이 다른 오디(Morus alba L.)의 성인병 관련 효소 억제효과)

  • Chae, Jung-Woo;Park, Hye-Jin;Kang, Sun-Ae;Cha, Won-Seup;Ahn, Dong-Hyun;Cho, Young-Je
    • Journal of Life Science
    • /
    • v.22 no.7
    • /
    • pp.920-927
    • /
    • 2012
  • The objective of this research was to develop the functional material of water and 60% ethanol extracts from nine kinds of mulberry fruits (Morus alba L.) that influence the inhibitory activity on angiotensin-converting enzyme, xanthine oxidase, ${\alpha}$-amylase, and ${\alpha}$-glucosidase. The total phenolic contents in the water extracts were over 2 mg/g in two species (Cheongilppong and Kangwon III) and five species (Daeyoupchosaeng, Cheongilppong, Kangwon III, Hihak, and Cataneo) of 60% ethanol extracts. The inhibitory activity against the angiotensin-converting enzyme was determined with them. Baekwoon III was $90.9{\pm}4.5%$ in the water extracts, and Hihak was $81.8{\pm}4.5%$ in the 60% ethanol extracts. The inhibitory activity of Kuksang 20 against xanthin oxidase was about 10% in the water extracts, and Cataneo was $21.4{\pm}2.3%$ in the 60% ethanol extracts. Six of the species (Daeyoupchosaeng, Suwonppong, Cheongilppong, Kangwon III, Hihak, and Kuksang 20) in the water extracts showed inhibitory activities against ${\alpha}$-amylase, as 100%, respectively. The inhibitory activity of ${\alpha}$-glucosidase was determined for these nine species. Four species (Baekwoon III, Daeyoupchosaeng, Cheongilppong, Kangwon III, Hihak, and Kuksang 20) in the water extracts and three species (Daechoukmyeun, Kangwon III, and Kuksang 20) in the 60% ethanol extracts showed inhibition of over 20%. The results revealed strong biological activity in spite of little total phenolic contents. These water and 60% ethanol extracts with high-quality biological activity from various mulberry fruits (Morus alba L.) are expected to represent good candidates for the development of antihypertentive and antidiabetes sources.

Antioxidant and Antidiabetic Activities of Jerusalem Artichoke Composites Containing Gynura procumbens, Momordica charantia, and Curcuma longa via AMPK Activation (명월초, 여주 및 울금을 포함한 돼지감자 복합물의 항산화 및 AMPK 활성화를 통한 항당뇨 활성)

  • Lee, Soo-Jung;Hu, Wen-Si;Pyo, Jae-Ho;Ryu, Ji Hyeon;Kang, Dawon;Jeong, Bo-Young;Sung, Nak-Ju
    • Journal of Life Science
    • /
    • v.28 no.1
    • /
    • pp.26-36
    • /
    • 2018
  • This study was performed to identify the antioxidant and ${\alpha}$-glucosidase inhibitory activities of water and 70% ethanol extracts of the three following herbs: G. procumbens, M. charantia, and C. longa. In addition, the antioxidant and antidiabetic activities of five types of Jerusalem artichoke composites (JA1 - 5), which were prepared by adding ethanol extracts of several herbs to Jerusalem artichoke concentrate, were studied and compared. The results showed that the total phenol and flavonoid contents of the ethanol extracts were higher than those of the water extracts. The DPPH and ABTS radical scavenging activities and reducing power depended on the total phenol and flavonoid contents. The antioxidant activities of ethanol extracts from G. procumbens and C. longa were comparable. Moreover, the ${\alpha}$-glucosidase inhibitory activity of the ethanol extracts ($2,000{\mu}g/ml$) from each herb was found to be over 50%. In contrast, the five types of JA composites showed higher total phenol and flavonoid contents than those of JA concentrate. In addition, increased antioxidant and ${\alpha}$-glucosidase inhibitory activities were observed, with that of JA1 being the highest. However, all concentrations ($1{\sim}100{\mu}g/ml$) of JA tested did not affect the cell viability of Chang cells. In addition, JA induced the activation of AMP-activated protein kinase (AMPK) in Chang cells and significantly increased the glucose uptake in C2C12 cells. Therefore, it could be concluded that the JA composites (JA1 - 5) mixed with G. procumbens, M. charantia, and C. longa extracts were effective in increasing the extracts' antioxidant and antidiabetic activities.

Effect of Ethanol Extracts of Goat's Beard on Streptozotocin Induced Diabetic Symptoms and Oxidative Stress in Rats (삼나물 에탄올 추출물이 Streptozotocin으로 유발한 흰쥐의 당뇨증상과 산화적 스트레스에 미치는 영향)

  • Shin, Jong-Wook;Lee, Sang-Il;Woo, Mi-Hee;Kim, Soon-Dong
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.18 no.6
    • /
    • pp.939-948
    • /
    • 2008
  • The effects of goat's beard (Aruncus dioicus var ramtschaticus Hara) ethanol extracts (AD) on the streptozotocin-induced diabetic symptoms and oxidative stress in rats were assessed. Experimental plots were divided into normal controls (NC), diabetes controls (DM), diet with 0.3% AD after diabetes induction (SA), and diet with 0.6% AD after diabetes induction (SB), then fed for 5 weeks. In the SA and SB groups as compared with the DM group, diabetic symptoms including weight loss, increase in feed and water intake, and enlargement of the liver and kidney were improved. The levels of blood glucose and serum fructosamine were reduced by $17.9{\sim}27.2%$ and $25.6{\sim}32.6%$, respectively. The activities of alanine aminotransferase, aspartate aminotransferase and the levels of triglycerides, total cholesterol, and LDL-cholesterol in the serum were reduced by $25.6{\sim}30.3$, $42.37{\sim}55.51$, $26.85{\sim}30.44$ and $37.29{\sim}39.11%$, respectively, whereas the level of HDL-cholesterol was increased by $37.29{\sim}39.11%$. Hepatic total (T) and O type (O) activities of xanthine oxidoreductase, O/T ratio(%) and level of lipid peroxide were significantly decreased, while the level of glutathione was increased, and also the activities of superoxide dismutase and glutathione S-transferase were increased by $56.84{\sim}94.90%$ and $57.14{\sim}68.92%$, respectively. In the above results, it was noted that AD has an antidiabetic effect which alleviated hyperglycemia and the AD reduced and/or prevented the tissue damage caused by diabetes yia the inhibition of reactive oxygen species (ROS) generating systems concurrent with an increase in ROS scavenging.

  • PDF